This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371443 #6 Mar 30 2024 15:59:53 %S A371443 1,8,9,32,33,40,41,128,129,136,137,160,161,168,169,256,257,264,265, %T A371443 288,289,296,297,384,385,392,393,416,417,424,425,512,513,520,521,544, %U A371443 545,552,553,640,641,648,649,672,673,680,681,768,769,776,777,800,801,808 %N A371443 Numbers whose binary indices are nonprime numbers. %C A371443 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %e A371443 The terms together with their binary expansions and binary indices begin: %e A371443 1: 1 ~ {1} %e A371443 8: 1000 ~ {4} %e A371443 9: 1001 ~ {1,4} %e A371443 32: 100000 ~ {6} %e A371443 33: 100001 ~ {1,6} %e A371443 40: 101000 ~ {4,6} %e A371443 41: 101001 ~ {1,4,6} %e A371443 128: 10000000 ~ {8} %e A371443 129: 10000001 ~ {1,8} %e A371443 136: 10001000 ~ {4,8} %e A371443 137: 10001001 ~ {1,4,8} %e A371443 160: 10100000 ~ {6,8} %e A371443 161: 10100001 ~ {1,6,8} %e A371443 168: 10101000 ~ {4,6,8} %e A371443 169: 10101001 ~ {1,4,6,8} %e A371443 256: 100000000 ~ {9} %e A371443 257: 100000001 ~ {1,9} %e A371443 264: 100001000 ~ {4,9} %e A371443 265: 100001001 ~ {1,4,9} %e A371443 288: 100100000 ~ {6,9} %e A371443 289: 100100001 ~ {1,6,9} %e A371443 296: 100101000 ~ {4,6,9} %t A371443 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A371443 Select[Range[100],And@@Not/@PrimeQ/@bpe[#]&] %Y A371443 For powers of 2 instead of nonprime numbers we have A253317. %Y A371443 For prime indices instead of binary indices we have A320628. %Y A371443 For prime instead of nonprime we have A326782. %Y A371443 For composite numbers we have A371444. %Y A371443 An opposite version is A371449. %Y A371443 A000040 lists prime numbers, complement A018252. %Y A371443 A000961 lists prime-powers. %Y A371443 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A371443 A070939 gives length of binary expansion. %Y A371443 A096111 gives product of binary indices. %Y A371443 Cf. A001222, A005117, A326781, A368109, A368533, A371289, A371452. %K A371443 nonn %O A371443 1,2 %A A371443 _Gus Wiseman_, Mar 30 2024