This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371444 #5 Mar 30 2024 15:59:44 %S A371444 8,32,40,128,136,160,168,256,264,288,296,384,392,416,424,512,520,544, %T A371444 552,640,648,672,680,768,776,800,808,896,904,928,936,2048,2056,2080, %U A371444 2088,2176,2184,2208,2216,2304,2312,2336,2344,2432,2440,2464,2472,2560,2568 %N A371444 Numbers whose binary indices are composite numbers. %C A371444 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %e A371444 The terms together with their binary expansions and binary indices begin: %e A371444 8: 1000 ~ {4} %e A371444 32: 100000 ~ {6} %e A371444 40: 101000 ~ {4,6} %e A371444 128: 10000000 ~ {8} %e A371444 136: 10001000 ~ {4,8} %e A371444 160: 10100000 ~ {6,8} %e A371444 168: 10101000 ~ {4,6,8} %e A371444 256: 100000000 ~ {9} %e A371444 264: 100001000 ~ {4,9} %e A371444 288: 100100000 ~ {6,9} %e A371444 296: 100101000 ~ {4,6,9} %e A371444 384: 110000000 ~ {8,9} %e A371444 392: 110001000 ~ {4,8,9} %e A371444 416: 110100000 ~ {6,8,9} %e A371444 424: 110101000 ~ {4,6,8,9} %e A371444 512: 1000000000 ~ {10} %e A371444 520: 1000001000 ~ {4,10} %e A371444 544: 1000100000 ~ {6,10} %e A371444 552: 1000101000 ~ {4,6,10} %e A371444 640: 1010000000 ~ {8,10} %e A371444 648: 1010001000 ~ {4,8,10} %e A371444 672: 1010100000 ~ {6,8,10} %t A371444 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A371444 Select[Range[100],EvenQ[#]&&And@@Not/@PrimeQ/@bpe[#]&] %Y A371444 For powers of 2 instead of composite numbers we have A253317. %Y A371444 For prime indices we have the even case of A320628. %Y A371444 For prime instead of composite we have A326782. %Y A371444 This is the even case of A371444. %Y A371444 An opposite version is A371449. %Y A371444 A000040 lists prime numbers, complement A018252. %Y A371444 A000961 lists prime-powers. %Y A371444 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A371444 A070939 gives length of binary expansion. %Y A371444 A096111 gives product of binary indices. %Y A371444 Cf. A001222, A005117, A055887, A320629, A326781, A368109, A368533, A371289, A371452. %K A371444 nonn %O A371444 1,1 %A A371444 _Gus Wiseman_, Mar 30 2024