This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371445 #11 Mar 31 2024 08:48:08 %S A371445 2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,37,41,43,47,49,53,55, %T A371445 59,61,64,65,67,71,73,79,81,83,89,97,101,103,107,109,113,115,121,125, %U A371445 127,128,131,137,139,143,145,149,151,157,163,167,169,173,179,181 %N A371445 Numbers whose distinct prime indices are binary carry-connected and have no binary containments. %C A371445 Also Heinz numbers of binary carry-connected integer partitions whose distinct parts have no binary containments, counted by A371446. %C A371445 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %C A371445 A binary carry of two positive integers is an overlap of binary indices. A multiset is said to be binary carry-connected iff the graph whose vertices are the elements and whose edges are binary carries is connected. %C A371445 A binary containment is a containment of binary indices. For example, the numbers {3,5} have binary indices {{1,2},{1,3}}, so there is a binary carry but not a binary containment. %F A371445 Intersection of A371455 and A325118. %e A371445 The terms together with their prime indices begin: %e A371445 2: {1} 37: {12} 97: {25} %e A371445 3: {2} 41: {13} 101: {26} %e A371445 4: {1,1} 43: {14} 103: {27} %e A371445 5: {3} 47: {15} 107: {28} %e A371445 7: {4} 49: {4,4} 109: {29} %e A371445 8: {1,1,1} 53: {16} 113: {30} %e A371445 9: {2,2} 55: {3,5} 115: {3,9} %e A371445 11: {5} 59: {17} 121: {5,5} %e A371445 13: {6} 61: {18} 125: {3,3,3} %e A371445 16: {1,1,1,1} 64: {1,1,1,1,1,1} 127: {31} %e A371445 17: {7} 65: {3,6} 128: {1,1,1,1,1,1,1} %e A371445 19: {8} 67: {19} 131: {32} %e A371445 23: {9} 71: {20} 137: {33} %e A371445 25: {3,3} 73: {21} 139: {34} %e A371445 27: {2,2,2} 79: {22} 143: {5,6} %e A371445 29: {10} 81: {2,2,2,2} 145: {3,10} %e A371445 31: {11} 83: {23} 149: {35} %e A371445 32: {1,1,1,1,1} 89: {24} 151: {36} %t A371445 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A371445 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A371445 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A371445 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]]; %t A371445 Select[Range[100],stableQ[bpe/@prix[#],SubsetQ] && Length[csm[bpe/@prix[#]]]==1&] %Y A371445 Contains all powers of primes A000961 except 1. %Y A371445 Case of A325118 (counted by A325098) without binary containments. %Y A371445 For binary indices of binary indices we have A326750 = A326704 /\ A326749. %Y A371445 For prime indices of prime indices we have A329559 = A305078 /\ A316476. %Y A371445 An opposite version is A371294 = A087086 /\ A371291. %Y A371445 Partitions of this type are counted by A371446. %Y A371445 Carry-connected case of A371455 (counted by A325109). %Y A371445 A001187 counts connected graphs. %Y A371445 A007718 counts non-isomorphic connected multiset partitions. %Y A371445 A048143 counts connected antichains of sets. %Y A371445 A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum. %Y A371445 A070939 gives length of binary expansion. %Y A371445 A326964 counts connected set-systems, covering A323818. %Y A371445 Cf. A019565, A056239, A112798, A304713, A304716, A305079, A305148, A325097, A325105, A325107, A325119, A371452. %K A371445 nonn %O A371445 1,1 %A A371445 _Gus Wiseman_, Mar 30 2024