cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371447 Numbers whose binary indices of prime indices cover an initial interval of positive integers.

This page as a plain text file.
%I A371447 #5 Mar 31 2024 23:51:37
%S A371447 1,2,4,5,6,8,10,12,15,16,17,18,20,24,25,26,30,32,33,34,35,36,40,42,45,
%T A371447 47,48,50,51,52,54,55,60,64,65,66,68,70,72,75,78,80,84,85,86,90,94,96,
%U A371447 99,100,102,104,105,108,110,119,120,123,125,126,127,128,130
%N A371447 Numbers whose binary indices of prime indices cover an initial interval of positive integers.
%C A371447 Also Heinz numbers of integer partitions whose parts have binary indices covering an initial interval.
%C A371447 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%C A371447 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A371447 The terms together with their binary indices of prime indices begin:
%e A371447    1: {}
%e A371447    2: {{1}}
%e A371447    4: {{1},{1}}
%e A371447    5: {{1,2}}
%e A371447    6: {{1},{2}}
%e A371447    8: {{1},{1},{1}}
%e A371447   10: {{1},{1,2}}
%e A371447   12: {{1},{1},{2}}
%e A371447   15: {{2},{1,2}}
%e A371447   16: {{1},{1},{1},{1}}
%e A371447   17: {{1,2,3}}
%e A371447   18: {{1},{2},{2}}
%e A371447   20: {{1},{1},{1,2}}
%e A371447   24: {{1},{1},{1},{2}}
%e A371447   25: {{1,2},{1,2}}
%e A371447   26: {{1},{2,3}}
%e A371447   30: {{1},{2},{1,2}}
%e A371447   32: {{1},{1},{1},{1},{1}}
%t A371447 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
%t A371447 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t A371447 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A371447 Select[Range[1000],normQ[Join@@bpe/@prix[#]]&]
%Y A371447 For prime indices of prime indices we have A320456.
%Y A371447 For binary indices of binary indices we have A326754.
%Y A371447 An opposite version is A371292, A371293.
%Y A371447 The case with squarefree product of prime indices is A371448.
%Y A371447 The connected components of this multiset system are counted by A371451.
%Y A371447 A000009 counts partitions covering initial interval, compositions A107429.
%Y A371447 A000670 counts patterns, ranked by A333217.
%Y A371447 A011782 counts multisets covering an initial interval.
%Y A371447 A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
%Y A371447 A070939 gives length of binary expansion.
%Y A371447 A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
%Y A371447 A131689 counts patterns by number of distinct parts.
%Y A371447 Cf. A000040, A000961, A019565, A055887, A255906, A325097, A325118, A326782, A368109, A371452.
%K A371447 nonn
%O A371447 1,2
%A A371447 _Gus Wiseman_, Mar 31 2024