cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371448 Numbers such that (1) the product of prime indices is squarefree, and (2) the binary indices of prime indices cover an initial interval of positive integers.

This page as a plain text file.
%I A371448 #4 Mar 31 2024 23:51:32
%S A371448 1,2,4,5,6,8,10,12,15,16,17,20,24,26,30,32,33,34,40,47,48,51,52,55,60,
%T A371448 64,66,68,80,85,86,94,96,102,104,110,120,123,127,128,132,136,141,143,
%U A371448 160,165,170,172,187,188,192,204,205,208,215,220,221,226,240,246
%N A371448 Numbers such that (1) the product of prime indices is squarefree, and (2) the binary indices of prime indices cover an initial interval of positive integers.
%C A371448 Also Heinz numbers of integer partitions whose parts have (1) squarefree product and (2) binary indices covering an initial interval.
%C A371448 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%C A371448 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%F A371448 Intersection of A302505 and A371447.
%e A371448 The terms together with their binary indices of prime indices begin:
%e A371448    1: {}
%e A371448    2: {{1}}
%e A371448    4: {{1},{1}}
%e A371448    5: {{1,2}}
%e A371448    6: {{1},{2}}
%e A371448    8: {{1},{1},{1}}
%e A371448   10: {{1},{1,2}}
%e A371448   12: {{1},{1},{2}}
%e A371448   15: {{2},{1,2}}
%e A371448   16: {{1},{1},{1},{1}}
%e A371448   17: {{1,2,3}}
%e A371448   20: {{1},{1},{1,2}}
%e A371448   24: {{1},{1},{1},{2}}
%e A371448   26: {{1},{2,3}}
%e A371448   30: {{1},{2},{1,2}}
%e A371448   32: {{1},{1},{1},{1},{1}}
%e A371448   33: {{2},{1,3}}
%e A371448   34: {{1},{1,2,3}}
%e A371448   40: {{1},{1},{1},{1,2}}
%e A371448   47: {{1,2,3,4}}
%e A371448   48: {{1},{1},{1},{1},{2}}
%e A371448   51: {{2},{1,2,3}}
%t A371448 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
%t A371448 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t A371448 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A371448 Select[Range[1000], SquareFreeQ[Times@@prix[#]]&&normQ[Join@@bpe/@prix[#]]&]
%Y A371448 An opposite version is A371293, A371292.
%Y A371448 Without the squarefree condition we have A371447, see also A320456, A326754.
%Y A371448 The connected components of this multiset system are counted by A371451.
%Y A371448 A000009 counts partitions covering initial interval, compositions A107429.
%Y A371448 A000670 counts patterns, ranked by A333217.
%Y A371448 A011782 counts multisets covering an initial interval.
%Y A371448 A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
%Y A371448 A070939 gives length of binary expansion.
%Y A371448 A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
%Y A371448 A131689 counts patterns by number of distinct parts.
%Y A371448 Cf. A000040, A000961, A019565, A055887, A255906, A325097, A325118, A326782, A368109, A371452.
%K A371448 nonn
%O A371448 1,2
%A A371448 _Gus Wiseman_, Mar 31 2024