cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371449 Numbers whose prime indices are not powers of 2.

This page as a plain text file.
%I A371449 #6 Mar 31 2024 23:51:24
%S A371449 1,5,11,13,17,23,25,29,31,37,41,43,47,55,59,61,65,67,71,73,79,83,85,
%T A371449 89,97,101,103,107,109,113,115,121,125,127,137,139,143,145,149,151,
%U A371449 155,157,163,167,169,173,179,181,185,187,191,193,197,199,205,211,215
%N A371449 Numbers whose prime indices are not powers of 2.
%C A371449 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A371449 The terms together with their prime indices begin:
%e A371449      1: {}        85: {3,7}      169: {6,6}     253: {5,9}
%e A371449      5: {3}       89: {24}       173: {40}      257: {55}
%e A371449     11: {5}       97: {25}       179: {41}      263: {56}
%e A371449     13: {6}      101: {26}       181: {42}      269: {57}
%e A371449     17: {7}      103: {27}       185: {3,12}    271: {58}
%e A371449     23: {9}      107: {28}       187: {5,7}     275: {3,3,5}
%e A371449     25: {3,3}    109: {29}       191: {43}      277: {59}
%e A371449     29: {10}     113: {30}       193: {44}      281: {60}
%e A371449     31: {11}     115: {3,9}      197: {45}      283: {61}
%e A371449     37: {12}     121: {5,5}      199: {46}      289: {7,7}
%e A371449     41: {13}     125: {3,3,3}    205: {3,13}    293: {62}
%e A371449     43: {14}     127: {31}       211: {47}      295: {3,17}
%e A371449     47: {15}     137: {33}       215: {3,14}    299: {6,9}
%e A371449     55: {3,5}    139: {34}       221: {6,7}     305: {3,18}
%e A371449     59: {17}     143: {5,6}      223: {48}      307: {63}
%e A371449     61: {18}     145: {3,10}     227: {49}      313: {65}
%e A371449     65: {3,6}    149: {35}       229: {50}      317: {66}
%e A371449     67: {19}     151: {36}       233: {51}      319: {5,10}
%e A371449     71: {20}     155: {3,11}     235: {3,15}    325: {3,3,6}
%e A371449     73: {21}     157: {37}       239: {52}      331: {67}
%e A371449     79: {22}     163: {38}       241: {53}      335: {3,19}
%e A371449     83: {23}     167: {39}       251: {54}      337: {68}
%t A371449 Select[Range[100],And@@Not/@IntegerQ/@Log[2, PrimePi/@First/@FactorInteger[#]]&]
%Y A371449 Partitions of this type are counted by A101417.
%Y A371449 For binary indices instead of prime indices we have A326781.
%Y A371449 Requiring powers of two gives A318400, for binary indices A253317.
%Y A371449 An opposite version is A371443.
%Y A371449 For primes instead of powers of 2 we have A320628.
%Y A371449 A000040 lists prime numbers, complement A018252.
%Y A371449 A000961 lists prime-powers.
%Y A371449 A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
%Y A371449 A057716 lists non-powers of 2.
%Y A371449 A070939 gives length of binary expansion.
%Y A371449 A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
%Y A371449 Cf. A005117, A326782, A371451, A371444.
%K A371449 nonn
%O A371449 1,2
%A A371449 _Gus Wiseman_, Mar 31 2024