This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371453 #14 Aug 16 2024 20:48:16 %S A371453 32,512,544,8192,8224,8704,8736,16384,16416,16896,16928,24576,24608, %T A371453 25088,25120,1048576,1048608,1049088,1049120,1056768,1056800,1057280, %U A371453 1057312,1064960,1064992,1065472,1065504,1073152,1073184,1073664,1073696,2097152,2097184 %N A371453 Numbers whose binary indices are all squarefree semiprimes. %C A371453 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. %e A371453 The terms together with their binary expansions and binary indices begin: %e A371453 32: 100000 ~ {6} %e A371453 512: 1000000000 ~ {10} %e A371453 544: 1000100000 ~ {6,10} %e A371453 8192: 10000000000000 ~ {14} %e A371453 8224: 10000000100000 ~ {6,14} %e A371453 8704: 10001000000000 ~ {10,14} %e A371453 8736: 10001000100000 ~ {6,10,14} %e A371453 16384: 100000000000000 ~ {15} %e A371453 16416: 100000000100000 ~ {6,15} %e A371453 16896: 100001000000000 ~ {10,15} %e A371453 16928: 100001000100000 ~ {6,10,15} %e A371453 24576: 110000000000000 ~ {14,15} %e A371453 24608: 110000000100000 ~ {6,14,15} %e A371453 25088: 110001000000000 ~ {10,14,15} %e A371453 25120: 110001000100000 ~ {6,10,14,15} %e A371453 1048576: 100000000000000000000 ~ {21} %p A371453 M:= 26: # for terms < 2^M %p A371453 P:= select(isprime, [$2..(M+1)/2]): nP:= nops(P): %p A371453 S:= select(`<`,{seq(seq(P[i]*P[j],i=1..j-1),j=1..nP)},M+1): %p A371453 R:= map(proc(s) local i; add(2^(i-1),i=s) end proc, combinat:-powerset(S) minus {{}}): %p A371453 sort(convert(R,list)); # _Robert Israel_, Apr 04 2024 %t A371453 bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A371453 sqfsemi[n_]:=SquareFreeQ[n]&&PrimeOmega[n]==2; %t A371453 Select[Range[10000],And@@sqfsemi/@bix[#]&] %o A371453 (Python) %o A371453 def A371453(n): return sum(1<<A006881(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1') %o A371453 (Python) %o A371453 from math import isqrt %o A371453 from sympy import primepi, primerange %o A371453 def A371453(n): %o A371453 def f(x,n): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1))) %o A371453 def A006881(n): %o A371453 m, k = n, f(n,n) %o A371453 while m != k: %o A371453 m, k = k, f(k,n) %o A371453 return m %o A371453 return sum(1<<A006881(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1') # _Chai Wah Wu_, Aug 16 2024 %Y A371453 Partitions of this type are counted by A002100, squarefree case of A101048. %Y A371453 For primes instead of squarefree semiprimes we get A326782. %Y A371453 For prime indices instead of binary indices we have A339113, A339112. %Y A371453 Allowing any squarefree numbers gives A368533. %Y A371453 This is the squarefree case of A371454. %Y A371453 A001358 lists squarefree semiprimes, squarefree A006881. %Y A371453 A005117 lists squarefree numbers. %Y A371453 A048793 lists binary indices, reverse A272020, length A000120, sum A029931. %Y A371453 A070939 gives length of binary expansion. %Y A371453 A096111 gives product of binary indices. %Y A371453 Cf. A087086, A112798, A296119, A302478, A326031, A367905, A368109, A371450. %K A371453 nonn,base %O A371453 1,1 %A A371453 _Gus Wiseman_, Apr 02 2024