A371454 Numbers whose binary indices are all semiprimes.
8, 32, 40, 256, 264, 288, 296, 512, 520, 544, 552, 768, 776, 800, 808, 8192, 8200, 8224, 8232, 8448, 8456, 8480, 8488, 8704, 8712, 8736, 8744, 8960, 8968, 8992, 9000, 16384, 16392, 16416, 16424, 16640, 16648, 16672, 16680, 16896, 16904, 16928, 16936, 17152
Offset: 1
Examples
The terms together with their binary expansions and binary indices begin: 8: 1000 ~ {4} 32: 100000 ~ {6} 40: 101000 ~ {4,6} 256: 100000000 ~ {9} 264: 100001000 ~ {4,9} 288: 100100000 ~ {6,9} 296: 100101000 ~ {4,6,9} 512: 1000000000 ~ {10} 520: 1000001000 ~ {4,10} 544: 1000100000 ~ {6,10} 552: 1000101000 ~ {4,6,10} 768: 1100000000 ~ {9,10} 776: 1100001000 ~ {4,9,10} 800: 1100100000 ~ {6,9,10} 808: 1100101000 ~ {4,6,9,10}
Crossrefs
Programs
-
Mathematica
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; semi[n_]:=PrimeOmega[n]==2; Select[Range[10000],And@@semi/@bix[#]&]
-
Python
from math import isqrt from sympy import primepi, primerange def A371454(n): def f(x,n): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1))) def A001358(n): m, k = n, f(n,n) while m != k: m, k = k, f(k,n) return m return sum(1<<A001358(i)-1 for i, j in enumerate(bin(n)[:1:-1],1) if j=='1') # Chai Wah Wu, Aug 16 2024
Comments