This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371459 #23 Mar 28 2024 18:04:05 %S A371459 0,0,0,1,0,0,1,1,0,1,0,1,2,3,2,3,0,0,1,1,0,0,1,1,2,2,3,3,2,2,3,3,0,1, %T A371459 0,1,2,3,2,3,0,1,0,1,2,3,2,3,4,5,4,5,6,7,6,7,4,5,4,5,6,7,6,7,0,0,1,1, %U A371459 0,0,1,1,2,2,3,3,2,2,3,3,0,0,1,1,0,0,1 %N A371459 For any positive integer with binary digits (b_1, ..., b_w) (where b_1 = 1), the binary digits of a(n), possibly with leading zeros, are (b_2, b_4, ..., b_{floor(w/2) * 2}); a(0) = 0. %C A371459 In other words, we keep even-indexed bits. %C A371459 Every integer appears infinitely many times in the sequence. %H A371459 Rémy Sigrist, <a href="/A371459/b371459.txt">Table of n, a(n) for n = 0..8192</a> %H A371459 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A371459 a(n) = 0 iff n belongs to A126684. %F A371459 a(A000695(n)) = 0. %F A371459 a(A001196(n)) = n. %e A371459 The first terms, in decimal and in binary, are: %e A371459 n a(n) bin(n) bin(a(n)) %e A371459 -- ---- ------ --------- %e A371459 0 0 0 0 %e A371459 1 0 1 0 %e A371459 2 0 10 0 %e A371459 3 1 11 1 %e A371459 4 0 100 0 %e A371459 5 0 101 0 %e A371459 6 1 110 1 %e A371459 7 1 111 1 %e A371459 8 0 1000 0 %e A371459 9 1 1001 1 %e A371459 10 0 1010 0 %e A371459 11 1 1011 1 %e A371459 12 2 1100 10 %e A371459 13 3 1101 11 %e A371459 14 2 1110 10 %e A371459 15 3 1111 11 %e A371459 16 0 10000 0 %t A371459 A371459[n_] := FromDigits[IntegerDigits[n, 2][[2;;-1;;2]], 2]; %t A371459 Array[A371459, 100, 0] (* _Paolo Xausa_, Mar 28 2024 *) %o A371459 (PARI) a(n) = { my (b = binary(n)); fromdigits(vector(#b\2, k, b[2*k]), 2); } %o A371459 (Python) %o A371459 def A371459(n): return int(bin(n)[3::2],2) if n>1 else 0 # _Chai Wah Wu_, Mar 27 2024 %Y A371459 See A371442 for the sequence related to odd-indexed bits. %Y A371459 See A059906 and A063695 for similar sequences. %Y A371459 Cf. A000695, A001196, A126684. %K A371459 nonn,base,easy %O A371459 0,13 %A A371459 _Rémy Sigrist_, Mar 24 2024