This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371460 #15 Apr 16 2024 13:34:48 %S A371460 1,2,10,80,838,10952,171910,3148280,65890198,1551389192,40586247910, %T A371460 1167964662680,36666464437558,1247011549249832,45672691012357510, %U A371460 1792280373542404280,75021202465129000918,3336499249170658956872,157116438405334017308710,7809681380575733223237080,408621675981135189773468278 %N A371460 Binomial transform of A355409. %F A371460 a(0) = 1, a(n) = (-1)^n + Sum_{j=1..n} (1-(-2)^j)*binomial(n,j)*a(n-j) for n > 0. %F A371460 a(0) = 1, a(n) = 1 + Sum_{j=1..n} (3^j-2^j)*binomial(n,j)*a(n-j) for n > 0. %F A371460 E.g.f.: exp(x)/(1 + exp(2*x) - exp(3*x)). %o A371460 (SageMath) %o A371460 def a(n): %o A371460 if n==0: %o A371460 return 1 %o A371460 else: %o A371460 return (-1)^n + sum([(1-(-2)^j)*binomial(n,j)*a(n-j) for j in [1,..,n]]) %o A371460 list(a(n) for n in [0,..,20]) %o A371460 (SageMath) %o A371460 f= e^(x)/(1 + e^(2*x) - e^(3*x)) %o A371460 print([(diff(f,x,i)).subs(x=0) for i in [0,..,20]]) %Y A371460 Cf. A355409. %K A371460 nonn %O A371460 0,2 %A A371460 _Prabha Sivaramannair_, Mar 24 2024