cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371460 Binomial transform of A355409.

This page as a plain text file.
%I A371460 #15 Apr 16 2024 13:34:48
%S A371460 1,2,10,80,838,10952,171910,3148280,65890198,1551389192,40586247910,
%T A371460 1167964662680,36666464437558,1247011549249832,45672691012357510,
%U A371460 1792280373542404280,75021202465129000918,3336499249170658956872,157116438405334017308710,7809681380575733223237080,408621675981135189773468278
%N A371460 Binomial transform of A355409.
%F A371460 a(0) = 1, a(n) = (-1)^n + Sum_{j=1..n} (1-(-2)^j)*binomial(n,j)*a(n-j) for n > 0.
%F A371460 a(0) = 1, a(n) = 1 + Sum_{j=1..n} (3^j-2^j)*binomial(n,j)*a(n-j) for n > 0.
%F A371460 E.g.f.: exp(x)/(1 + exp(2*x) - exp(3*x)).
%o A371460 (SageMath)
%o A371460 def a(n):
%o A371460     if n==0:
%o A371460         return 1
%o A371460     else:
%o A371460         return (-1)^n + sum([(1-(-2)^j)*binomial(n,j)*a(n-j) for j in [1,..,n]])
%o A371460 list(a(n) for n in [0,..,20])
%o A371460 (SageMath)
%o A371460 f= e^(x)/(1 + e^(2*x) - e^(3*x))
%o A371460 print([(diff(f,x,i)).subs(x=0) for i in [0,..,20]])
%Y A371460 Cf. A355409.
%K A371460 nonn
%O A371460 0,2
%A A371460 _Prabha Sivaramannair_, Mar 24 2024