This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371463 #19 Mar 30 2024 15:56:46 %S A371463 0,13,26,31,39,62,93,1133,1313,1331,1779,1797,1977,2266,2626,2662, %T A371463 3113,3131,3311,3399,3939,3993,6226,6262,6622,7179,7197,7719,7791, %U A371463 7917,7971,9177,9339,9393,9717,9771,9933,10111,11011,11101,11110,11123,11132,11213,11231 %N A371463 Numbers such that the arithmetic mean of its digits is equal to twice the population standard deviation of its digits. %C A371463 Equivalently, numbers whose digits have the coefficient of variation (or relative population standard deviation) equal to 1/2. %C A371463 Any number obtained without leading zeros from a permutation of the digits of a given term of the sequence is also a term. %C A371463 The concatenation of several copies of any term is a term. - _Robert Israel_, Mar 24 2024 %H A371463 Wikipedia, <a href="https://en.wikipedia.org/wiki/Coefficient_of_variation">Coefficient of variation</a>. %H A371463 Wikipedia, <a href="https://en.wikipedia.org/wiki/Standard_deviation">Standard deviation</a>. %e A371463 1133 is a term since the mean of the digits is (1 + 1 + 3 + 3)/4 = 2 and the standard deviation of the digits is sqrt(((1-2)^2 + (1-2)^2 + (3-2)^2 + (3-2)^2)/4) = 1. %t A371463 DigStd[n_]:=If[n==0||IntegerLength[n]==1, 0, Sqrt[(IntegerLength[n]-1)/IntegerLength[n]]StandardDeviation[IntegerDigits[n]]]; Select[Range[0, 12000], Mean[IntegerDigits[#]]==2DigStd[#]&] %o A371463 (Python) %o A371463 from itertools import count, islice %o A371463 def A371463_gen(startvalue=0): # generator of terms >= startvalue %o A371463 return filter(lambda n:5*sum(s:=tuple(map(int,str(n))))**2 == len(s)*sum(d**2 for d in s)<<2, count(max(startvalue,0))) %o A371463 A371463_list = list(islice(A371463_gen(),20)) # _Chai Wah Wu_, Mar 30 2024 %Y A371463 Cf. A371383, A371384, A371462, A371464. %Y A371463 Cf. A238619, A238620, A238658, A238660, A238662. %K A371463 nonn,base %O A371463 1,2 %A A371463 _Stefano Spezia_, Mar 24 2024