This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371469 #23 Jun 12 2024 17:39:41 %S A371469 1023456789,3175462089,4680215379,5702631489,7351062489,7025869314 %N A371469 Least pandigital number whose n-th power contains each digit (0-9) exactly n times. %C A371469 If an n-th power of a pandigital number k contains each digit (0-9) exactly n times, it implies that 10^(10 - 1/n) <= 9876543210, so n <= 185. It's easy to verify that no solutions exist for n=7 to 185. %C A371469 For the largest pandigital number whose n-th power contains each digit (0-9) exactly n times, see A370667. %e A371469 a(4) = 5702631489 because it is the least 10-digit number that contains each digit (0-9) exactly once and its 4th power 1057550783692741389295697108242363408641 contains each digit (0-9) exactly 4 times. %t A371469 s = FromDigits /@ Permutations[Range[0, 9]]; For[n = 1, n < 7, n++, %t A371469 For[k = 1, k <= Length@s, k++, %t A371469 If[Count[Tally[IntegerDigits[s[[k]]^n]][[All, 2]], n] == 10, %t A371469 Print[{n, s[[k]]}]; Break[]]]] %o A371469 (Python) %o A371469 from itertools import permutations as per %o A371469 a=[] %o A371469 for n in range(1,7): %o A371469 for k in [int(''.join(d)) for d in per('0123456789', 10)]: %o A371469 if all(str(k**n).count(d) ==n for d in '0123456789'): %o A371469 a.append(k) %o A371469 break %o A371469 print(a) %Y A371469 Cf. A050278, A199630, A199631, A199632, A199633, A078255, A154532, A154566, A357755, A365144, A370667. %K A371469 base,easy,fini,full,nonn,less %O A371469 1,1 %A A371469 _Zhining Yang_, Apr 01 2024