cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371486 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1-x))^4.

This page as a plain text file.
%I A371486 #15 Mar 25 2024 12:06:30
%S A371486 1,4,30,260,2465,24796,260008,2811216,31117240,350890260,4016744586,
%T A371486 46556054072,545273713228,6443442857024,76727957438650,
%U A371486 919796418086076,11091249210406816,134439965189940176,1637160457090585016,20019920157735604796,245733987135102838131
%N A371486 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1-x))^4.
%F A371486 a(n) = Sum_{k=0..n} binomial(n-1,n-k) * binomial(5*k+3,k)/(k+1).
%F A371486 G.f.: A(x) = B(x/(1-x)), where B(x) = (1/x) * Series_Reversion( x*(1-x)^4 ).
%F A371486 G.f.: A(x) = B(x)^4 where B(x) is the g.f. of A349332.
%o A371486 (PARI) a(n) = sum(k=0, n, binomial(n-1, n-k)*binomial(5*k+3, k)/(k+1));
%Y A371486 Cf. A002212, A270386, A371483.
%Y A371486 Cf. A118971, A349332.
%K A371486 nonn
%O A371486 0,2
%A A371486 _Seiichi Manyama_, Mar 25 2024