cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371496 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1+x))^4.

This page as a plain text file.
%I A371496 #12 Mar 25 2024 12:06:24
%S A371496 1,4,22,156,1233,10420,92120,841376,7876616,75177492,728784802,
%T A371496 7156081536,71024862452,711383912672,7181295333306,72989746391780,
%U A371496 746308443708928,7671359593228624,79226966456758424,821691132077059740,8554576791134761387
%N A371496 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1+x))^4.
%F A371496 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1,n-k) * binomial(5*k+3,k)/(k+1).
%F A371496 G.f.: A(x) = B(x)^4 where B(x) is the g.f. of A349361.
%o A371496 (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1, n-k)*binomial(5*k+3, k)/(k+1));
%Y A371496 Cf. A001006, A371494, A371495.
%Y A371496 Cf. A118971, A349361.
%K A371496 nonn
%O A371496 0,2
%A A371496 _Seiichi Manyama_, Mar 25 2024