This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371497 #15 Apr 20 2024 10:16:55 %S A371497 1,1,1,1,3,9,1,5,7,9,19,1,3,4,1,2,4,8,1,3,5,9,15,17,25,27,31,1,7,9,11, %T A371497 13,15,19,25,29,41,43,1,4,5,6,7,9,13,1,3,5,9,11,15,23,25,27,33,41,43, %U A371497 45,49,55,1,3,4,7,9,10,11,12,16,1,2,4,5,8,9,10,16,18,20,1,3,7,9,13,17 %N A371497 Irregular triangle read by rows: n-th row gives congruence classes s such that the n-th prime q is a quadratic residue modulo an odd prime p if and only if p = plus or minus s for some s (mod m), where m = q if q is of the form 4k + 1, else m = 4q. %C A371497 If n-th prime q is of the form 4k + 1, then by quadratic reciprocity row n consists of quadratic residues mod q, that are less than 2k; i.e., for q > 3, the first half of the corresponding row in A063987. %C A371497 The first term in each row is always 1. %e A371497 The 1st prime, 2, not of the form 4k + 1, is a square modulo odd primes p if and only if p = +/- 1 (mod 4*2 = 8). %e A371497 The 6th prime, 13, of the form 4k + 1, is a square modulo odd primes p if and only if p = +/- 1, +/- 3, or +/- 4 (mod 13). %e A371497 The irregular triangle T(n,k) begins (q is prime(n)): %e A371497 n q \k 1 2 3 4 5 6 7 8 9 10 11 %e A371497 1, 2: 1 %e A371497 2, 3: 1 %e A371497 3, 5: 1 %e A371497 4, 7: 1 3 9 %e A371497 5, 11: 1 5 7 9 19 %e A371497 6: 13: 1 3 4 %e A371497 7, 17: 1 2 4 8 %e A371497 8, 19: 1 3 5 9 15 17 25 27 31 %e A371497 9, 23: 1 7 9 11 13 15 19 25 29 41 43 %e A371497 10, 29: 1 4 5 6 7 9 13 %o A371497 (Python) %o A371497 from sympy import prime %o A371497 def A371497_row(n): %o A371497 q = prime(n) %o A371497 res = {i*i % q for i in range(1, q//2 + 1)} %o A371497 if q % 4 == 1: %o A371497 res = {a for a in res if 2*a < q} %o A371497 else: %o A371497 res = {((a % 4 - 1) * q + a) % (4*q) for a in res} %o A371497 res = {a if a < 2*q else 4*q - a for a in res} %o A371497 return sorted(res) %Y A371497 Cf. A063987, A081728. %K A371497 nonn,tabf,easy %O A371497 1,5 %A A371497 _Nick Hobson_, Mar 25 2024