This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371509 #15 Mar 26 2024 16:59:53 %S A371509 2,67,223,2789,701,2423,243367,10513,10909,2114429,68543,181141, %T A371509 6139219,114493,356479,399946711,22549349,8371249,660040873,12088631, %U A371509 3352003 %N A371509 a(n) is the smallest prime that becomes composite if any single digit of its base-(2n+1) expansion is changed to a different digit (but not to zero). %C A371509 Bisection of A323745. a(n) <= A371475(n) with equality for some values of n. %F A371509 a(n) = A323745(2n+1). %F A371509 a(n) <= A371475(n). %o A371509 (Python) %o A371509 from sympy import isprime, nextprime %o A371509 from sympy.ntheory import digits %o A371509 def A371509(n): %o A371509 if n == 1: return 2 %o A371509 p, r = 5, (n<<1)+1 %o A371509 while True: %o A371509 m = 1 %o A371509 for j in digits(p,r)[:0:-1]: %o A371509 for k in range(2-(j&1),r,2): %o A371509 if k!=j and isprime(p+(k-j)*m): %o A371509 break %o A371509 else: %o A371509 m *= r %o A371509 continue %o A371509 break %o A371509 else: %o A371509 return p %o A371509 p = nextprime(p) %Y A371509 Cf. A186995, A323745, A371475. %K A371509 nonn,more,base %O A371509 1,1 %A A371509 _Chai Wah Wu_, Mar 25 2024