A371511 a(n) is the smallest prime such that its representation in base n contains each of the digits 0,1,...,n-2 at least once and does not contain the digit n-1.
3, 73, 683, 8521, 123323, 2140069, 43720693, 1012356487, 26411157737, 749149003087, 23459877380431, 798411310382011, 29471615863458281, 1158045600182881261, 48851274656431280857, 2193475267557861578041, 104737172422274885174411, 5257403213296398892278377
Offset: 3
Examples
The corresponding base-n representations are: n a(n) in base n ------------------------ 3 10 4 1021 5 10213 6 103241 7 1022354 8 10123645 9 101236457 10 1012356487 11 10223456798 12 10123459a867 13 1012345678a9b 14 1012345678c9ab 15 1022345678a9cdb 16 10123456789acbed
Links
- Chai Wah Wu, Table of n, a(n) for n = 3..387
- Chai Wah Wu, Pandigital and penholodigital numbers, arXiv:2403.20304 [math.GM], 2024.
Programs
-
Python
from math import gcd from sympy import nextprime from sympy.ntheory import digits def A371511(n): m, j = n, 0 if n > 3: for j in range(1,n-1): if gcd((n*(n-1)>>1)+j,n-1) == 1: break if j == 0: for i in range(2,n-1): m = n*m+i elif j == 1: for i in range(1,n-1): m = n*m+i else: for i in range(2,1+j): m = n*m+i for i in range(j,n-1): m = n*m+i m -= 1 while True: s = digits(m:=nextprime(m), n)[1:] if n-1 not in s and len(set(s))==n-1: return m
Formula
For n>3, a(n) >= (n^(n-1)-n)/(n-1)^2 + n^(n-1). If n = 4k+3 for k>0, then a(n) >= (n^(n-1)-n)/(n-1)^2 + n^(n-1) + n^(n-3) .
Comments