cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371512 a(n) is the smallest prime such that its representation in base n contains each of the digits 1,...,n-2 at least once and does not contain the digit 0 nor the digit n-1.

Original entry on oeis.org

13, 37, 163, 1861, 22481, 304949, 5455573, 112345687, 2831681057, 68057976031, 1953952652167, 61390449569437, 2224884906436873, 77181689614101181, 3052505832274232281, 129003238915759600789, 6090208982148446231753, 276667213296398892309917, 13944042713948404997174231
Offset: 3

Views

Author

Chai Wah Wu, Apr 10 2024

Keywords

Comments

Conjecture: for n>3, a(n) has digit sum 2+(n-2)(n-1)/2 if n is of the form 4k+3 and has digit sum 1+(n-2)(n-1)/2 otherwise.

Examples

			The corresponding base-n representations are:
n   a(n) in base n
------------------------
3   111
4   211
5   1123
6   12341
7   122354
8   1123465
9   11234567
10  112345687
11  1223456987
12  1123458a967
13  112345678ba9
14  11234567a8bc9
15  122345678acb9d
16  1123456789ceabd
		

Crossrefs

Programs

  • Python
    from math import gcd
    from sympy import nextprime
    from sympy.ntheory import digits
    def A371512(n):
        m, j = 1, 0
        if n > 3:
            for j in range(1,n-1):
                if gcd((n*(n-1)>>1)+j,n-1) == 1:
                     break
        if j == 0:
            for i in range(2,n-1):
                m = n*m+i
        elif j == 1:
            for i in range(1,n-1):
                m = n*m+i
        else:
            for i in range(2,1+j):
                m = n*m+i
            for i in range(j,n-1):
                m = n*m+i
        m -= 1
        while True:
            s = digits(m:=nextprime(m), n)[1:]
            if (not (0 in s or n-1 in s)) and len(set(s))==n-2:
                return m

Formula

For n>=3, a(n) >= (n^(n-1)-n)/(n-1)^2 + n^(n-2). If n = 4k+3 for k>0, then a(n) >= (n^(n-1)-n)/(n-1)^2 + n^(n-2) + n^(n-3) .