A371512 a(n) is the smallest prime such that its representation in base n contains each of the digits 1,...,n-2 at least once and does not contain the digit 0 nor the digit n-1.
13, 37, 163, 1861, 22481, 304949, 5455573, 112345687, 2831681057, 68057976031, 1953952652167, 61390449569437, 2224884906436873, 77181689614101181, 3052505832274232281, 129003238915759600789, 6090208982148446231753, 276667213296398892309917, 13944042713948404997174231
Offset: 3
Examples
The corresponding base-n representations are: n a(n) in base n ------------------------ 3 111 4 211 5 1123 6 12341 7 122354 8 1123465 9 11234567 10 112345687 11 1223456987 12 1123458a967 13 112345678ba9 14 11234567a8bc9 15 122345678acb9d 16 1123456789ceabd
Links
- Chai Wah Wu, Table of n, a(n) for n = 3..388
- Chai Wah Wu, Pandigital and penholodigital numbers, arXiv:2403.20304 [math.GM], 2024.
Programs
-
Python
from math import gcd from sympy import nextprime from sympy.ntheory import digits def A371512(n): m, j = 1, 0 if n > 3: for j in range(1,n-1): if gcd((n*(n-1)>>1)+j,n-1) == 1: break if j == 0: for i in range(2,n-1): m = n*m+i elif j == 1: for i in range(1,n-1): m = n*m+i else: for i in range(2,1+j): m = n*m+i for i in range(j,n-1): m = n*m+i m -= 1 while True: s = digits(m:=nextprime(m), n)[1:] if (not (0 in s or n-1 in s)) and len(set(s))==n-2: return m
Formula
For n>=3, a(n) >= (n^(n-1)-n)/(n-1)^2 + n^(n-2). If n = 4k+3 for k>0, then a(n) >= (n^(n-1)-n)/(n-1)^2 + n^(n-2) + n^(n-3) .
Comments