cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371513 a(n) is the smallest number m with n divisors d such that d^m mod m = d.

Original entry on oeis.org

1, 2, 6, 42, 30, 105, 910, 561, 1365, 5005, 5565, 11305, 36465, 140505, 239785, 41041, 682465, 873145, 185185, 418285, 1683969, 2113665, 5503785, 1242241, 6697405, 8549905, 31932901, 11996985, 31260405, 30534805, 47031061, 825265, 27265161, 32306365, 55336645, 21662641
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Apr 10 2024

Keywords

Examples

			a(0) = 1 with divisors {};
a(1) = 2 with divisor {1};
a(2) = 6 with divisors {1, 3};
a(3) = 42 with divisors {1, 7, 21};
a(4) = 30 with divisors {1, 6, 10, 15};
a(5) = 105 with divisors {1, 7, 15, 21, 35};
a(6) = 910 with divisors {1, 35, 65, 91, 130, 455};
a(7) = 561 with divisors {1, 3, 11, 17, 33, 51, 187};
a(8) = 1365 with divisors {1, 13, 21, 91, 105, 195, 273, 455};
a(9) = 5005 with divisors {1, 11, 55, 65, 77, 143, 385, 715, 1001};
a(10) = 5565 with divisors {1, 7, 15, 21, 35, 105, 265, 371, 1113, 1855};
a(11) = 11305 with divisors {1, 17, 19, 35, 85, 119, 323, 595, 665, 1615, 2261}.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSum[n, 1 &, PowerMod[#, n, n] == # &]; seq[max_] := Module[{t = Table[0, {max}], c = 0, n = 1, i}, While[c < max, i = f[n] + 1; If[i <= max && t[[i]] == 0, c++; t[[i]] = n]; n++]; t]; seq[18] (* Amiram Eldar, Apr 11 2024 *)
  • Python
    from sympy import divisors
    from itertools import count, islice
    def f(n, divs): return sum(1 for d in divs if pow(d, n, n) == d%n)
    def agen(verbose=False): # generator of terms
        adict, n = dict(), 0
        for k in count(1):
            divs = divisors(k)[1:]
            if len(divs) < n: continue
            v = f(k, divs)
            if v not in adict:
                adict[v] = k
                if verbose: print("FOUND", v, k)
            while n in adict: yield adict[n]; n += 1
    print(list(islice(agen(), 15))) # Michael S. Branicky, Apr 10 2024, updated Apr 17 2024 after Jon E. Schoenfield

Extensions

a(12)-a(25) from Michael S. Branicky, Apr 10 2024
a(26)-a(35) from Jon E. Schoenfield, Apr 10 2024