cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371527 Decimal expansion of Product_{k>=2} (1 + (-1)^k/Fibonacci(k)).

Original entry on oeis.org

1, 1, 3, 8, 7, 3, 4, 8, 6, 1, 7, 0, 7, 1, 9, 6, 2, 1, 8, 0, 9, 6, 8, 9, 5, 0, 8, 5, 7, 4, 2, 0, 4, 3, 1, 8, 7, 6, 3, 7, 8, 8, 8, 9, 4, 7, 9, 1, 5, 7, 3, 2, 5, 1, 3, 7, 4, 4, 1, 3, 4, 4, 2, 4, 2, 6, 4, 9, 2, 2, 8, 1, 6, 7, 4, 2, 2, 2, 2, 2, 6, 7, 4, 0, 0, 7, 8, 6, 2, 3, 9, 3, 3, 8, 4, 0, 9, 2, 1, 7, 6, 4, 4, 3, 9
Offset: 1

Views

Author

Amiram Eldar, Mar 26 2024

Keywords

Examples

			1.13873486170719621809689508574204318763788894791573...
		

Crossrefs

Programs

  • Mathematica
    With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[2 * Sqrt[5] * Surd[GoldenRatio^5, 4] * eta[tau0]^3 * eta[4*tau0]/eta[2*tau0]^2, 10, 120][[1]]]
  • PARI
    prodinf(k = 2, 1 + (-1)^k/fibonacci(k))

Formula

Equals Product_{k>=2} (1 + (-1)^k/A000045(k)).
Equals 6 * A337669.
Equals 2 * sqrt(5) * phi^(5/4) * eta(tau_0)^3 * eta(4*tau_0) / eta(2*tau_0)^2, where phi is the golden ratio (A001622), tau_0 = i*log(phi)/Pi, and i = sqrt(-1) (Duverney et al., 2022).