A371527 Decimal expansion of Product_{k>=2} (1 + (-1)^k/Fibonacci(k)).
1, 1, 3, 8, 7, 3, 4, 8, 6, 1, 7, 0, 7, 1, 9, 6, 2, 1, 8, 0, 9, 6, 8, 9, 5, 0, 8, 5, 7, 4, 2, 0, 4, 3, 1, 8, 7, 6, 3, 7, 8, 8, 8, 9, 4, 7, 9, 1, 5, 7, 3, 2, 5, 1, 3, 7, 4, 4, 1, 3, 4, 4, 2, 4, 2, 6, 4, 9, 2, 2, 8, 1, 6, 7, 4, 2, 2, 2, 2, 2, 6, 7, 4, 0, 0, 7, 8, 6, 2, 3, 9, 3, 3, 8, 4, 0, 9, 2, 1, 7, 6, 4, 4, 3, 9
Offset: 1
Examples
1.13873486170719621809689508574204318763788894791573...
Links
- Daniel Duverney, Carsten Elsner, Masanobu Kaneko, and Yohei Tachiya, A criterion of algebraic independence of values of modular functions and an application to infinite products involving Fibonacci and Lucas numbers, Research in Number Theory, Vol. 8 (2022), Article 31; alternative link.
- Eric Weisstein's World of Mathematics, Dedekind Eta Function.
- Wikipedia, Dedekind eta function.
Crossrefs
Programs
-
Mathematica
With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[2 * Sqrt[5] * Surd[GoldenRatio^5, 4] * eta[tau0]^3 * eta[4*tau0]/eta[2*tau0]^2, 10, 120][[1]]]
-
PARI
prodinf(k = 2, 1 + (-1)^k/fibonacci(k))