This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371528 #6 Mar 27 2024 21:30:05 %S A371528 1,0,9,5,9,1,3,8,8,8,1,4,8,6,8,2,0,3,0,6,3,4,3,6,9,4,4,7,5,5,2,2,2,1, %T A371528 5,7,7,6,8,2,5,1,6,6,2,8,5,9,7,0,2,3,7,2,5,1,1,2,8,4,1,7,2,8,9,2,9,8, %U A371528 0,8,1,7,0,5,0,2,3,0,0,9,8,4,0,9,3,1,8,6,8,0,2,4,8,6,1,0,9,3,3,6,2,6,7,8,1 %N A371528 Decimal expansion of Product_{k>=3} (1 - (-1)^k/Fibonacci(k)). %H A371528 Daniel Duverney, Carsten Elsner, Masanobu Kaneko, and Yohei Tachiya, <a href="https://doi.org/10.1007/s40993-022-00328-7">A criterion of algebraic independence of values of modular functions and an application to infinite products involving Fibonacci and Lucas numbers</a>, Research in Number Theory, Vol. 8 (2022), Article 31; <a href="https://www2.math.kyushu-u.ac.jp/~mkaneko/papers/DEKT.pdf">alternative link</a>. %H A371528 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DedekindEtaFunction.html">Dedekind Eta Function</a>. %H A371528 Wikipedia, <a href="https://en.wikipedia.org/wiki/Dedekind_eta_function">Dedekind eta function</a>. %F A371528 Equals Product_{k>=2} (1 - (-1)^k/A000045(k)). %F A371528 Equals A337668 / 12. %F A371528 Equals (phi^(5/4)/3) * eta(4*tau_0) / eta(tau_0), where phi is the golden ratio (A001622), tau_0 = i*log(phi)/Pi, and i = sqrt(-1) (Duverney et al., 2022). %e A371528 1.09591388814868203063436944755222157768251662859702... %t A371528 With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[(Surd[GoldenRatio^5, 4] / 3) * eta[4*tau0]/eta[tau0], 10, 120][[1]]] %o A371528 (PARI) prodinf(k = 3, 1 - (-1)^k/fibonacci(k)) %Y A371528 Cf. A000045, A001622, A002390, A337668, A337669, A371525, A371526, A371527, A371529, A371530. %K A371528 nonn,cons %O A371528 1,3 %A A371528 _Amiram Eldar_, Mar 26 2024