A371529 Decimal expansion of Product_{k>=2} (1 + (-1)^k/Lucas(k)).
1, 0, 7, 2, 4, 8, 2, 7, 1, 7, 7, 5, 5, 1, 3, 0, 6, 2, 5, 8, 8, 5, 3, 7, 8, 8, 1, 6, 5, 2, 6, 6, 0, 8, 6, 9, 3, 0, 4, 3, 9, 2, 0, 4, 9, 3, 3, 3, 0, 9, 9, 2, 3, 6, 1, 3, 8, 5, 3, 2, 8, 7, 0, 9, 3, 9, 5, 9, 7, 6, 0, 7, 4, 3, 7, 7, 8, 3, 0, 4, 2, 5, 6, 5, 5, 8, 2, 3, 8, 9, 8, 1, 3, 1, 1, 4, 4, 8, 4, 0, 6, 4, 8, 4, 6
Offset: 1
Examples
1.07248271775513062588537881652660869304392049333099...
Links
- Daniel Duverney, Carsten Elsner, Masanobu Kaneko, and Yohei Tachiya, A criterion of algebraic independence of values of modular functions and an application to infinite products involving Fibonacci and Lucas numbers, Research in Number Theory, Vol. 8 (2022), Article 31; alternative link.
- Eric Weisstein's World of Mathematics, Dedekind Eta Function.
- Wikipedia, Dedekind eta function.
Crossrefs
Programs
-
Mathematica
With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[(Surd[GoldenRatio, 4] / Sqrt[5]) * eta[2*tau0]^3 * eta[3*tau0] / (eta[tau0]^2 * eta[4*tau0]), 10, 120][[1]]]
-
PARI
prodinf(k = 2, 1 + (-1)^k/(fibonacci(k-1) + fibonacci(k+1)))