This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371561 #36 Apr 18 2024 18:06:10 %S A371561 5,35,57,355,359,557,579,3335,3357,5579,5777,33557,35559,333555, %T A371561 357799,557779,3335779,3355777,33333577 %N A371561 Numbers with multiplicative digital root of 5 that are free of 1s and have their digits in ascending order. %C A371561 Conjectured to be complete. %C A371561 If it exists, a(20) > 10^500. - _Michael S. Branicky_, Apr 18 2024 %t A371561 A031347 = Table[NestWhile[Times @@ IntegerDigits[#] &, n, # > 9 &], {n, 1, 100000}]; Select[Range[100000], A031347[[#]] == 5 && DigitCount[#, 10, 1] == 0 && Sort[IntegerDigits[#]] == IntegerDigits[#] &] (* _Vaclav Kotesovec_, Apr 17 2024 *) %o A371561 (Python) %o A371561 from math import prod %o A371561 from itertools import count, islice, combinations_with_replacement as mc %o A371561 def A031347(n): %o A371561 while n > 9: n = prod(map(int, str(n))) %o A371561 return n %o A371561 def bgen(): yield from (m for d in count(1) for m in mc((3,5,7,9), d)) %o A371561 def agen(): yield from (int("".join(map(str, t))) for t in bgen() if A031347(prod(t)) == 5) %o A371561 print(list(islice(agen(), 19))) # _Michael S. Branicky_, Apr 17 2024, edited Apr 18 2024 after _Chai Wah Wu_ %o A371561 (Python) %o A371561 from math import prod %o A371561 from itertools import count, islice %o A371561 def A371561_gen(): # generator of terms %o A371561 for l in count(1): %o A371561 for a in range(l,-1,-1): %o A371561 a3 = 3**a %o A371561 for b in range(l-a,-1,-1): %o A371561 b3 = a3*5**b %o A371561 for c in range(l-a-b,-1,-1): %o A371561 d = l-a-b-c %o A371561 d3 = b3*7**c*9**d %o A371561 while d3 > 9: %o A371561 d3 = prod(int(x) for x in str(d3)) %o A371561 if d3==5: %o A371561 yield (10**(a+b+c+d)-1)//3+(10**d*(10**c*(10**b+1)+1)-3)*2//9 %o A371561 A371561_list = list(islice(A371561_gen(),19)) # _Chai Wah Wu_, Apr 17 2024 %Y A371561 Cf. A034052, A263473, A263479, A031347. %K A371561 nonn,more,base %O A371561 1,1 %A A371561 _Sergio Pimentel_, Mar 27 2024