This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371566 #14 Mar 28 2024 11:57:40 %S A371566 5,7,11,13,17,31,37,41,53,79,107,199,233,239,311,331,337,389,463,523, %T A371566 541,547,557,563,577,677,769,853,937,971,1009,1021,1033,1049,1061, %U A371566 1201,1237,1291,1307,1361,1427,1453,1543,1657,1699,1723,1747,1753,1759,1787,1801,1811,1861,1877,1997,1999 %N A371566 Primes p such that x^5 - x^4 - x^3 - x^2 - x - 1 is irreducible (mod p). %H A371566 Robert Israel, <a href="/A371566/b371566.txt">Table of n, a(n) for n = 1..10000</a> %p A371566 P:= x^5 - x^4 - x^3 - x^2 - x - 1: %p A371566 select(p -> Irreduc(P) mod p, [seq(ithprime(i), i=1..1000)]); # _Robert Israel_, Mar 13 2024 %t A371566 P = x^5 - x^4 - x^3 - x^2 - x - 1; %t A371566 Select[Prime[Range[1000]], IrreduciblePolynomialQ[P, Modulus -> #]&] (* _Jean-François Alcover_, Mar 24 2024, after _Robert Israel_ *) %o A371566 (Python) %o A371566 from itertools import islice %o A371566 from sympy import Poly, nextprime %o A371566 from sympy.abc import x %o A371566 def A371566_gen(): # generator of terms %o A371566 p = 2 %o A371566 while True: %o A371566 if Poly(x*(x*(x*(x*(x-1)-1)-1)-1)-1, x, modulus=p).is_irreducible: %o A371566 yield p %o A371566 p = nextprime(p) %o A371566 A371566_list = list(islice(A371566_gen(),20)) # _Chai Wah Wu_, Mar 14 2024 %o A371566 (PARI) a371566(upto) = forprime (p=2, upto, my(f=factormod(x^5 - x^4 - x^3 - x^2 - x - 1, p)); if(#f[,1]==1, print1(p,", "))) \\ _Hugo Pfoertner_, Mar 22 2024 %Y A371566 Contained in, but not equal to, A106309. Cf. A370830. %K A371566 nonn %O A371566 1,1 %A A371566 _Robert Israel_, Mar 27 2024