This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371568 #27 Jun 16 2025 23:48:45 %S A371568 1,0,1,0,2,1,0,0,6,1,0,0,6,14,1,0,0,0,36,30,1,0,0,0,24,150,62,1,0,0,0, %T A371568 0,240,540,126,1,0,0,0,0,120,1560,1806,254,1,0,0,0,0,1800,8400,5796, %U A371568 510,1 %N A371568 Array read by ascending antidiagonals: A(n, k) is the number of paths of length k in Z^n from the origin to points such that x1+x2+...+xn = k with x1,...,xn > 0. %C A371568 T(n, k) can also be seen as the number of ordered partitions of k items into n nonempty buckets. %C A371568 T(n, n) = n!, which is readily seen because to go from the origin to a point in Z^n a distance n away, with at least one step taken in each dimension, the first step can be in any of n dimensions, the second step in any of n-1 dimensions, and so on. %C A371568 This array is the image of Pascal's triangle A007318 under the Akiyama-Tanigawa transformation. See the Python program. - _Peter Luschny_, Apr 19 2024 %F A371568 A(n,k) = Sum_{i=1..n} (-1)^(n-i) * binomial(n,i) * i^k %e A371568 n\k 1 2 3 4 5 6 7 8 9 10 %e A371568 -------------------------------------------------- %e A371568 1| 1 1 1 1 1 1 1 1 1 1 %e A371568 2| 0 2 6 14 30 62 126 254 510 1022 %e A371568 3| 0 0 6 36 150 540 1806 5796 18150 55980 %e A371568 4| 0 0 0 24 240 1560 8400 40824 186480 818520 %e A371568 5| 0 0 0 0 120 1800 16800 126000 834120 5103000 %e A371568 6| 0 0 0 0 0 720 15120 191520 1905120 16435440 %e A371568 7| 0 0 0 0 0 0 5040 141120 2328480 29635200 %e A371568 8| 0 0 0 0 0 0 0 40320 1451520 30240000 %e A371568 9| 0 0 0 0 0 0 0 0 362880 16329600 %e A371568 10| 0 0 0 0 0 0 0 0 0 3628800 %t A371568 A[n_,k_] := Sum[(-1)^(n-i) * i^k * Binomial[n,i], {i,1,n}] %o A371568 (Python) %o A371568 # The Akiyama-Tanigawa algorithm for the binomial generates the rows. %o A371568 # Adds row(0) = 0^k and column(0) = 0^n. %o A371568 from math import comb as binomial %o A371568 def ATBinomial(n, len): %o A371568 A = [0] * len %o A371568 R = [0] * len %o A371568 for k in range(len): %o A371568 R[k] = binomial(k, n) %o A371568 for j in range(k, 0, -1): %o A371568 R[j - 1] = j * (R[j] - R[j - 1]) %o A371568 A[k] = R[0] %o A371568 return A %o A371568 for n in range(11): print([n], ATBinomial(n, 11)) # _Peter Luschny_, Apr 19 2024 %Y A371568 Cf. A000918 (n=2), A001117 (n=3), A000919 (n=4), A001118 (n=5), A000920 (n=6). %Y A371568 Cf. A135456 (n=7), A133068 (n=8), A133360 (n=9), A133132 (n=10). %Y A371568 Cf. A371064, A007318. %Y A371568 See A019538 and A131689 for other versions. %K A371568 nonn,tabl %O A371568 1,5 %A A371568 _Shel Kaphan_, Mar 28 2024