This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371569 #13 Mar 29 2024 08:48:11 %S A371569 4259,61643,94307,110063,118171,348149,1037903,1872587,2149403, %T A371569 2331859,2450807,2490263,2500847,2521823,2534659,2772179,2788367, %U A371569 2789939,3271883,3399707,3550751,3577487,3640859,3861899,3904309,4016219,4063211,4236719,4245239,4368739,4441007,4542779,5033477,5446283 %N A371569 Primes p such that for all initial conditions (x(0),x(1),x(2),x(3),x(4)) in [0..p-1]^5 except [0,0,0,0,0], the 5-step recurrence x(k) = x(k-1) + x(k-2) + x(k-3) + x(k-4) + x(k-5) (mod p) has the same period, but x^5 - x^4 - x^3 - x^2 - x - 1 is reducible (mod p). %C A371569 Terms of A106309 that are not in A371566. %C A371569 In each of the first 2000 terms, x^5 - x^4 - x^3 - x^2 - x - 1 splits into linear factors (mod p). Are there any where it does not? %H A371569 Robert Israel, <a href="/A371569/b371569.txt">Table of n, a(n) for n = 1..2000</a> %H A371569 Robert Israel, <a href="/A371569/a371569.pdf">Linear Recurrences with a Single Minimal Period</a> %e A371569 a(3) = 94307 is a term because 94307 is prime, z^5 - z^4 - z^3 - z^2 - z - 1 = (z + 11827)*(z + 78583)*(z + 54610)*(z + 14536)*(z + 29057) (mod 94307), and the recurrence has period 47153 for all initial conditions except (0,0,0,0,0), as -11827, -78583, -54610, -14536, and -29057 all have multiplicative order 47153 (mod 94307). %p A371569 filter:= proc(p) local Q, q, F, i, z, d, k, kp, G, alpha; %p A371569 if not isprime(p) then return false fi; %p A371569 Q:= z^5 - z^4 - z^3 - z^2 - z - 1; %p A371569 if Irreduc(Q) mod p then return false fi; %p A371569 F:= (Factors(Q) mod p)[2]; %p A371569 if ormap(t -> t[2]>1, F) then return false fi; %p A371569 for i from 1 to nops(F) do %p A371569 q:= F[i][1]; %p A371569 d:= degree(q); %p A371569 if d = 1 then kp:= NumberTheory:-MultiplicativeOrder(p+solve(q, z), p); %p A371569 else %p A371569 G:= GF(p, d, q); %p A371569 alpha:= G:-ConvertIn(z); %p A371569 kp:= G:-order(alpha); %p A371569 fi; %p A371569 if i = 1 then k:= kp %p A371569 elif kp <> k then return false %p A371569 fi; %p A371569 od; %p A371569 true %p A371569 end proc: %p A371569 select(filter, [seq(i, i=3 .. 10^7,2)]); %Y A371569 Cf. A106309, A371566. %K A371569 nonn %O A371569 1,1 %A A371569 _Robert Israel_, Mar 28 2024