A371588 Smallest Fibonacci number > 1 such that some permutation of its digits is a perfect n-th power.
2, 144, 8, 610, 5358359254990966640871840, 68330027629092351019822533679447, 15156039800290547036315704478931467953361427680642, 23770696554372451866815101694984845480039225387896643963981, 119447720249892581203851665820676436622934188700177088360
Offset: 1
Examples
a(1) = 2 since 2 = 2^1. a(2) = 144 since 144 = 12^2. a(3) = 8 since 8 = 2^3. a(4) = 610 since 016 = 2^4. a(5) = 5358359254990966640871840 since 0735948608251696955804943 = 59343^5 a(6) = 68330027629092351019822533679447 since 00059398947526192142327360782336 = 62464^6.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..16
Programs
-
Python
from itertools import count from sympy import integer_nthroot def A371588(n): a, b = 1, 2 while True: s = sorted(str(b)) l = len(s) m = int(''.join(s[::-1])) u = int(''.join(s)) for i in count(max(2,integer_nthroot(u,n)[0])): if (k:=i**n) > m: break t = sorted(str(k)) if ['0']*(l-len(t))+t == s: return b break a, b = b, a+b
Comments