This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371595 #15 Mar 30 2024 12:59:39 %S A371595 1,8,781,2801,16105,30941,88741,9,22,14,190861,1926221,2896405,7,23, %T A371595 8042221,29,10,66,560,18,39449441,6888,88,32,100,34,132316201,108,16, %U A371595 42,26,68,46,74,7600,4108,81,83,43,178,45,190,32,98,1576159601,70,37,226,13110,2959999381,3276517921,29040 %N A371595 a(n) is the least period of the 5-step recurrence x(k) = (x(k-1) + x(k-2) + x(k-3) + x(k-4) + x(k-5)) mod prime(n) for initial conditions (x(0),x(1),x(2),x(3),x(4)) other than (0,0,0,0,0) in [0..prime(n)-1]^5. %C A371595 It appears that a(n) <= (prime(n)^5-1)/(prime(n)-1), with equality in many cases. %H A371595 Robert Israel, <a href="/A371595/b371595.txt">Table of n, a(n) for n = 1..10000</a> %H A371595 Robert Israel, <a href="/A371595/a371595_1.pdf">Minimal Period of Linear Recurrences</a>. %e A371595 a(8) = 9 because prime(3) = 5 and the recurrence has minimal period 9; e.g., with initial values 4, 7, 11, 6, 1 it continues 16, 9, 11, 5, 4, 7, 17, 6, 1, ... %p A371595 minperiod:= proc(p) %p A371595 local Q, q, F, i, z, d, k, kp, G, alpha; %p A371595 Q:= z^5 - z^4 - z^3 - z^2 - z - 1; %p A371595 F:= (Factors(Q) mod p)[2]; %p A371595 k:= infinity; %p A371595 for i from 1 to nops(F) do %p A371595 q:= F[i][1]; %p A371595 d:= degree(q); %p A371595 if d = 1 then kp:= NumberTheory:-MultiplicativeOrder(p+solve(q, z), p); %p A371595 else %p A371595 G:= GF(p, d, q); %p A371595 alpha:= G:-ConvertIn(z); %p A371595 kp:= G:-order(alpha); %p A371595 fi; %p A371595 k:= min(k,kp); %p A371595 od; %p A371595 k; %p A371595 end proc: %p A371595 map(minperiod, [seq(ithprime(i),i=1..100)]); %Y A371595 Cf. A106309. %K A371595 nonn,look %O A371595 1,2 %A A371595 _Robert Israel_, Mar 28 2024