This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371599 #11 Apr 26 2025 20:27:16 %S A371599 1,12,48,72,192,288,432,768,1152,1260,1728,2592,3072,4608,5040,6912, %T A371599 10368,12288,12600,15552,18432,20160,27648,41472,45360,49152,50400, %U A371599 62208,73728,75600,80640,93312,110592,165888,181440,196608,201600,248832,264600,294912,302400 %N A371599 Numbers of least prime signature (A025487) whose prime factorization has equal number of even and odd exponents. %H A371599 Amiram Eldar, <a href="/A371599/b371599.txt">Table of n, a(n) for n = 1..10000</a> %e A371599 The prime signatures of the first 12 terms are: %e A371599 n a(n) signature A162641(a(n)) = A162642(a(n)) %e A371599 -- ------- ------------ ----------------------------- %e A371599 1 1 {} 0 %e A371599 2 12 {2,1} 1 %e A371599 3 48 {4,1} 1 %e A371599 4 72 {3,2} 1 %e A371599 5 192 {6,1} 1 %e A371599 6 288 {5,2} 1 %e A371599 7 432 {4,3} 1 %e A371599 8 768 {8,1} 1 %e A371599 9 1152 {7,2} 1 %e A371599 10 1260 {2,2,1,1} 2 %e A371599 11 1728 {6,3} 1 %e A371599 12 2592 {5,4} 1 %t A371599 fun[p_, e_] := (-1)^e; q[n_] := Module[{f = FactorInteger[n]}, n == 1 || (f[[-1, 1]] == Prime[Length[f]] && Max@ Differences[f[[;; , 2]]] < 1 && Plus @@ fun @@@ f == 0)]; Select[Range[3*10^5], q] %o A371599 (PARI) is(n) = {my(f = factor(n), p = f[, 1], e = f[, 2]); n == 1 || (prime(#p) == p[#p] && e == vecsort(e, , 4) && sum(i = 1, #e, (-1)^e[i]) == 0);} %Y A371599 Intersection of A025487 and A187039. %Y A371599 Cf. A162641, A162642, A371600. %K A371599 nonn %O A371599 1,2 %A A371599 _Amiram Eldar_, Mar 29 2024