cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371599 Numbers of least prime signature (A025487) whose prime factorization has equal number of even and odd exponents.

This page as a plain text file.
%I A371599 #11 Apr 26 2025 20:27:16
%S A371599 1,12,48,72,192,288,432,768,1152,1260,1728,2592,3072,4608,5040,6912,
%T A371599 10368,12288,12600,15552,18432,20160,27648,41472,45360,49152,50400,
%U A371599 62208,73728,75600,80640,93312,110592,165888,181440,196608,201600,248832,264600,294912,302400
%N A371599 Numbers of least prime signature (A025487) whose prime factorization has equal number of even and odd exponents.
%H A371599 Amiram Eldar, <a href="/A371599/b371599.txt">Table of n, a(n) for n = 1..10000</a>
%e A371599 The prime signatures of the first 12 terms are:
%e A371599    n     a(n)     signature  A162641(a(n)) = A162642(a(n))
%e A371599   --  -------  ------------  -----------------------------
%e A371599    1        1            {}                              0
%e A371599    2       12         {2,1}                              1
%e A371599    3       48         {4,1}                              1
%e A371599    4       72         {3,2}                              1
%e A371599    5      192         {6,1}                              1
%e A371599    6      288         {5,2}                              1
%e A371599    7      432         {4,3}                              1
%e A371599    8      768         {8,1}                              1
%e A371599    9     1152         {7,2}                              1
%e A371599   10     1260     {2,2,1,1}                              2
%e A371599   11     1728         {6,3}                              1
%e A371599   12     2592         {5,4}                              1
%t A371599 fun[p_, e_] := (-1)^e; q[n_] := Module[{f = FactorInteger[n]}, n == 1 || (f[[-1, 1]] == Prime[Length[f]] && Max@ Differences[f[[;; , 2]]] < 1 && Plus @@ fun @@@ f == 0)]; Select[Range[3*10^5], q]
%o A371599 (PARI) is(n) = {my(f = factor(n), p = f[, 1], e = f[, 2]); n == 1 || (prime(#p) == p[#p] && e == vecsort(e, , 4) && sum(i = 1, #e, (-1)^e[i]) == 0);}
%Y A371599 Intersection of A025487 and A187039.
%Y A371599 Cf. A162641, A162642, A371600.
%K A371599 nonn
%O A371599 1,2
%A A371599 _Amiram Eldar_, Mar 29 2024