cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A371600 Numbers of least prime signature (A025487) whose prime factorization has equal sum of even and odd exponents.

Original entry on oeis.org

1, 60, 2160, 12600, 18480, 77760, 180180, 216000, 453600, 665280, 2646000, 2799360, 3880800, 7776000, 10810800, 16329600, 16336320, 23950080, 32016600, 45360000, 66528000, 95256000, 100776960, 139708800, 214414200, 232792560, 279936000, 389188800, 555660000, 587865600
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2024

Keywords

Examples

			The prime signatures of the first 12 terms are:
   n     a(n)     signature  A350386(a(n)) = A350387(a(n))
  --  -------  ------------  -------------   -------------
   1        1            {}             0                0
   2       60       {1,1,2}             2            1+1=2
   3     2160       {1,3,4}             4            1+3=4
   4    12600     {1,2,2,3}         2+2=4            1+3=4
   5    18480   {1,1,1,1,4}             4        1+1+1+1=4
   6    77760       {1,5,6}             6            1+5=6
   7   180180 {1,1,1,1,2,2}         2+2=4        1+1+1+1=4
   8   216000       {3,3,6}             6            3+3=6
   9   453600     {1,2,4,5}         2+4=6            1+5=6
  10   665280   {1,1,1,3,6}             6        1+1+1+3=6
  11  2646000     {2,3,3,4}         2+4=6            3+3=6
  12  2799360       {1,7,8}             8            1+7=8
		

Crossrefs

Intersection of A025487 and A356413.

Programs

  • Mathematica
    fun[p_, e_] := (-1)^e * e; q[n_] := Module[{f = FactorInteger[n]}, n == 1 || (f[[-1, 1]] == Prime[Length[f]] && Plus @@ fun @@@ f == 0 && Max@ Differences[f[[;; , 2]]] < 1)]; Select[Range[4*10^6], q]
  • PARI
    is(n) = {my(f = factor(n), p = f[, 1], e = f[, 2]); n == 1 || (sum(i = 1, #e, (-1)^e[i] * e[i]) == 0 && e == vecsort(e, , 4) && primepi(p[#p]) == #p);}
Showing 1-1 of 1 results.