This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371601 #7 Mar 30 2024 05:33:02 %S A371601 4,8,9,12,16,20,24,25,27,28,32,36,40,44,45,48,49,52,56,60,63,64,68,72, %T A371601 76,80,81,84,88,92,96,99,100,104,108,112,116,117,120,121,124,125,128, %U A371601 132,135,136,140,144,148,152,153,156,160,164,168,169,171,172,175,176 %N A371601 Nonsquarefree numbers whose largest nonunitary prime divisor is smaller than their smallest unitary prime divisor, if it exists. %C A371601 Subsequence of A283050 and first differs from it at n = 100: A283050(100) = 300 = 2^2 * 3 * 5^2 is not a term of this sequence. %C A371601 Powerful numbers and nonpowerful numbers k such that 1 < A249740(k) < A277698(k), or equivalently, 1 < A006530(A057521(k)) < A020639(A055231(k)). %C A371601 The asymptotic density of this sequence is (6/Pi^2) * Sum_{p prime} f(p)/(p^2-p+1) = 0.32131800923..., where f(p) = Product_{primes q <= p} (q^2-q+1)/(q^2-1). %H A371601 Amiram Eldar, <a href="/A371601/b371601.txt">Table of n, a(n) for n = 1..10000</a> %t A371601 q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[e] > 1 && (Min[e] > 1 || Max[e[[FirstPosition[e, 1][[1]] ;; -1]]] == 1)]; Select[Range[200], q] %o A371601 (PARI) is(n) = {my(e = apply(x->if(x > 1, 2, 1), factor(n)[,2])); n > 1 && vecmax(e) > 1 && vecsort(e, , 4) == e;} %Y A371601 Subsequence of A013929 and A283050. %Y A371601 Cf. A001694, A006530, A020639, A052485, A055231, A057521, A059956, A249740, A277698. %K A371601 nonn,easy %O A371601 1,1 %A A371601 _Amiram Eldar_, Mar 29 2024