This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371637 #27 Feb 19 2025 11:56:34 %S A371637 1,1,2,1,12,20,1,30,300,488,1,56,1400,13664,22160,1,90,4200,102480, %T A371637 997200,1616672,1,132,9900,450912,10969200,106700352,172976960,1,182, %U A371637 20020,1465464,66546480,1618288672,15740903360,25518205568 %N A371637 Triangle read by rows: T(n, k) = (-8)^k*binomial(2*n, 2*k)*Euler(2*k, 1/2). %F A371637 Triangle T(n, k), 0 <= k <=n, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [2, 8, 18, 32, 50, 72, 98, ...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Apr 21 2024 %F A371637 T(n, k) = binomial(2*n, 2*k) * 2^k * abs(Euler(2*k)) = A086645(n, k) * A000079(k) * A000364(k). - _Philippe Deléham_, Apr 23 2024 %e A371637 Triangle starts: %e A371637 [0] 1; %e A371637 [1] 1, 2; %e A371637 [2] 1, 12, 20; %e A371637 [3] 1, 30, 300, 488; %e A371637 [4] 1, 56, 1400, 13664, 22160; %e A371637 [5] 1, 90, 4200, 102480, 997200, 1616672; %e A371637 [6] 1, 132, 9900, 450912, 10969200, 106700352, 172976960; %e A371637 [7] 1, 182, 20020, 1465464, 66546480, 1618288672, 15740903360, 25518205568; %p A371637 T := (n, k) -> (-8)^k*binomial(2*n, 2*k)*euler(2*k, 1/2): %p A371637 seq(print(seq(T(n, k), k = 0..n)), n = 0..7); %t A371637 Table[(-8)^k*Binomial[2*n, 2*k]*EulerE[2*k, 1/2], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Apr 17 2024 *) %o A371637 (SageMath) %o A371637 def DelehamDelta(R, S, dim): %o A371637 ring = PolynomialRing(ZZ, 'x') %o A371637 x = ring.gen() %o A371637 A = [R(k) + x * S(k) for k in range(dim)] %o A371637 C = [ring(0)] + [ring(1) for i in range(dim)] %o A371637 for k in range(1, dim + 1): %o A371637 for n in range(k - 1, 0, -1): %o A371637 C[n] = C[n-1] + C[n+1] * A[n-1] %o A371637 yield list(C[1]) %o A371637 def A371637_triangle(dim): %o A371637 a = lambda n: 1 - n % 2 %o A371637 b = lambda n: 2*(n + 1)^2 %o A371637 for row in DelehamDelta(a, b, dim): print(row) %o A371637 A371637_triangle(8) # _Peter Luschny_, Apr 21 2024 %Y A371637 Cf. A001105, A002939 (column 1), A012816 (main diagonal), A371683 (row sums), A371684 (alternating row sums). %Y A371637 Cf. A081658, A084938, A086645, A000079, A000364. %K A371637 nonn,tabl %O A371637 0,3 %A A371637 _Peter Luschny_, Apr 02 2024