cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371641 The smallest composite number which divides the concatenation of its ascending ordered prime factors, with repetition, when written in base n.

This page as a plain text file.
%I A371641 #54 Jan 12 2025 14:56:53
%S A371641 85329,4,224675,4,1140391,4,9,4,28749,4,841,4,9,4,239571,4,343,4,9,4,
%T A371641 231,4,25,4,9,4,315,4,343,4,9,4,25,4,9761637601,4,9,4,4234329,4,715,4,
%U A371641 9,4,609,4,49,4,9,4,195,4,25,4,9,4,1015,4,76729,4,9,4,25,4,14332171
%N A371641 The smallest composite number which divides the concatenation of its ascending ordered prime factors, with repetition, when written in base n.
%C A371641 The number 4 = 2*2 in any base b = 3 + 2*n, n >= 0, will always divide the concatenation of its prime divisors as 4 = "2"_b + "2"_b = "22"_b = 2*(3 + 2*n) + 2 = 8 + 4*n, which is divisible by 4.
%C A371641 The number 9 = 3*3 in any base b = 8 + 6*n, n >= 0, will always divide the concatenation of its prime divisors as 9 = "3"_b + "3"_b = "33"_b = 3*(8 + 6*n) + 3 = 27 + 18*n, which is divisible by 9.
%C A371641 Theorem: if p is prime, then a(p*(m+2)-1) <= p^2 for all m >= 0. Proof: If p is prime and base b = p*(m+2)-1 for some m >= 0, then b > p and p expressed in base b = "p"_b and thus "pp"_b = p*(b+1) = p^2*(m+2), i.e., divisible by p^2. - _Chai Wah Wu_, Apr 01 2024
%C A371641 a(36) <= 9761637601. a(40) = 4234329. By the theorem above if n+1 is composite, then a(n) <= p^2 where p = A020639(n+1) is the smallest prime factor of n+1. The first few terms where the inequality is strict are: a(406) = 105, a(766) = 105, a(988) = 195, a(1036) = 105, a(1072) = 231, ... - _Chai Wah Wu_, Apr 11 2024
%C A371641 From _Chai Wah Wu_, Apr 12 2024: (Start)
%C A371641 Theorem: If n is even, then a(n) >= 9 is odd.
%C A371641 Proof: This is true for n = 2. Let n > 2 be even. Let m be even.
%C A371641 If m=2^k for k>1, then 2 concatenated k times in base n is 2*(n^(k-1)+...+n+1) = 2*(n^k-1)/(n-1).
%C A371641 Since n^k-1 is odd, m does not divide 2*(n^k-1)/(n-1). If m has an odd prime divisor then concatenating the primes in base n will result in an odd number that is not divisible by m.
%C A371641 Finally, a(n) >= 9 since the first odd composite number is 9. (End)
%H A371641 Michael S. Branicky, <a href="/A371641/b371641.txt">Table of n, a(n) for n = 2..129</a>
%e A371641 a(2) = 85329 as 85329 = 3_10 * 3_10 * 19_10 * 499_10 = 11_2 * 11_2 * 10011_2 * 111110011_2 = "111110011111110011"_2 = 255987_10 which is divisible by 85329.
%e A371641 a(10) = 28749 as 28749 =  3_10 * 7_10 * 37_10 * 37_10 = "373737"_10 = 373737_10 which is divisible by 28749. See also A259047.
%o A371641 (Python)
%o A371641 from itertools import count
%o A371641 from sympy.ntheory import digits
%o A371641 from sympy import factorint, isprime
%o A371641 def fromdigits(d, b):
%o A371641     n = 0
%o A371641     for di in d: n *= b; n += di
%o A371641     return n
%o A371641 def a(n):
%o A371641     for k in count(4):
%o A371641         if isprime(k): continue
%o A371641         sf = []
%o A371641         for p, e in factorint(k).items():
%o A371641             sf.extend(e*digits(p, n)[1:])
%o A371641         if fromdigits(sf, n)%k == 0:
%o A371641             return k
%o A371641 print([a(n) for n in range(2, 6)]) # _Michael S. Branicky_, Apr 01 2024
%o A371641 (Python)
%o A371641 from itertools import count
%o A371641 from sympy import factorint, integer_log
%o A371641 def A371641(n):
%o A371641     for m in count(4):
%o A371641         f = factorint(m)
%o A371641         if sum(f.values()) > 1:
%o A371641             c = 0
%o A371641             for p in sorted(f):
%o A371641                 a = pow(n,integer_log(p,n)[0]+1,m)
%o A371641                 for _ in range(f[p]):
%o A371641                     c = (c*a+p)%m
%o A371641             if not c:
%o A371641                 return m # _Chai Wah Wu_, Apr 11 2024
%o A371641 (PARI) has(F,n)=my(f=F[2],t); for(i=1,#f~, my(p=f[i,1],d=#digits(p,n),D=n^d); for(j=1,f[i,2], t=D*t+p)); t%F[1]==0
%o A371641 a(k,lim=10^6,startAt=4)=forfactored(n=startAt,lim, if(vecsum(n[2][,2])>1 && has(n,k), return(n[1]))); a(k,2*lim,lim+1) \\ _Charles R Greathouse IV_, Apr 11 2024
%Y A371641 Cf. A020639, A027746, A259047, A322843, A248915.
%K A371641 nonn,base
%O A371641 2,1
%A A371641 _Scott R. Shannon_, Mar 30 2024
%E A371641 a(36) and beyond from _Michael S. Branicky_, Apr 27 2024