cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371603 a(n) = Product_{k=0..n} binomial(n^2, k^2).

Original entry on oeis.org

1, 1, 4, 1134, 333132800, 1319947441510156250, 876533819183888230348458418944000, 1185269534290897564185384010731432113450477770983533184
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[n^2, k^2], {k, 0, n}], {n, 0, 8}]

Formula

a(n) = (n^2)!^(n+1) / (A255322(n) * A371624(n)).
a(n) ~ c * exp(2*n*(2*n^2/3 + 1)) / (A^(2*n) * 2^(4*n*(n^2 + 1)/3) * Pi^(n/2) * n^(7*n/6 - 1/4)), where c = 0.6367427... and A is the Glaisher-Kinkelin constant A074962.

A371468 a(n) = Product_{k=0..n} (n^3 + k^3)!.

Original entry on oeis.org

1, 2, 306128067620555980800000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 01 2024

Keywords

Comments

The next term a(3) has 169 digits.

Crossrefs

Programs

  • Mathematica
    Table[Product[(n^3 + k^3)!, {k, 0, n}], {n, 0, 5}]

Formula

a(n) ~ 2^(2*n^4 + n^3 + n^2/4 + 3*n/2 + 89/120) * Pi^((n+1)/2) * exp(Pi*sqrt(3)*n^4/4 - 59*n^4/16 - 3*n^3/2 - 3*n/2 + Pi*n/(2*sqrt(3)) - 9/320) * n^(15*n^4/4 + 9*n^3/2 + 3*n^2/4 + 3*n/2 + 3/2).
Showing 1-2 of 2 results.