A371647 Decimal expansion of Sum_{k>=0} 1/Fibonacci(5^k).
1, 2, 0, 0, 0, 1, 3, 3, 2, 8, 8, 9, 0, 3, 6, 9, 8, 7, 6, 7, 0, 7, 7, 6, 4, 0, 9, 5, 4, 6, 8, 3, 5, 5, 0, 5, 6, 4, 3, 0, 5, 5, 5, 0, 6, 8, 8, 1, 3, 8, 0, 2, 6, 5, 7, 3, 0, 3, 6, 6, 1, 3, 7, 9, 4, 6, 9, 2, 6, 5, 6, 7, 8, 8, 5, 6, 9, 4, 8, 2, 4, 6, 2, 8, 6, 7, 7, 2, 7, 9, 4, 3, 4, 7, 6, 7, 4, 1, 0, 9, 0, 7, 0, 6, 2
Offset: 1
Examples
1.20001332889036987670776409546835505643055506881380...
Links
- M. A. Nyblom, A Theorem on Transcendence of Infinite Series II, Journal of Number Theory, Vol. 91, No. 1 (2001), pp. 71-80.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Mathematica
RealDigits[Sum[1/Fibonacci[5^k], {k, 0, 10}], 10, 120][[1]]
-
PARI
suminf(k = 0, 1/fibonacci(5^k))
Formula
Equals Sum_{k>=0} 1/A145232(k).
Comments