A371650 Decimal expansion of Product_{k>=0} (1 + 1/Lucas(5^k)).
2, 1, 8, 1, 8, 3, 1, 1, 8, 7, 3, 3, 3, 0, 6, 2, 0, 2, 3, 8, 4, 2, 3, 6, 0, 1, 7, 0, 5, 5, 6, 7, 6, 1, 0, 6, 7, 8, 0, 2, 4, 3, 5, 6, 4, 6, 9, 5, 7, 9, 6, 9, 2, 4, 1, 3, 1, 7, 0, 3, 2, 2, 5, 2, 9, 1, 3, 8, 0, 9, 1, 2, 6, 4, 3, 6, 0, 1, 6, 1, 9, 9, 2, 4, 7, 4, 9, 2, 0, 7, 3, 4, 0, 6, 4, 4, 1, 6, 0, 3, 5, 5, 7, 5, 0, 0, 2
Offset: 1
Examples
2.18183118733306202384236017055676106780243564695796...
Links
- M. A. Nyblom, On the Construction of a Family of Transcendental Valued Infinite Products, Fibonacci Quarterly, Vol. 42, No. 4 (2004), pp. 353-358.
- Index entries for transcendental numbers.
Programs
-
Mathematica
RealDigits[Product[1 + 1/LucasL[5^k], {k, 0, 10}], 10, 120][[1]]
-
PARI
prodinf(k = 0, 1 + 1/(fibonacci(5^k-1) + fibonacci(5^k+1)))
Formula
Equals Product_{k>=0} (1 + 1/A144837(k)).
Comments