cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371651 a(n) is the first prime p such that p - 2 and p + 2 both have exactly n prime factors, counted with multiplicity.

Original entry on oeis.org

5, 23, 173, 2693, 32587, 495637, 4447627, 35303123, 717591877, 928090627, 69692326373, 745041171877, 5012236328123, 64215009765623, 945336806640623, 8885812685546873
Offset: 1

Views

Author

Robert Israel, Apr 01 2024

Keywords

Comments

a(n) is the first prime p such that A001222(p - 2) = A001222(p + 2) = n.
3*10^9 < a(13) <= 5012236328123.
3*10^9 < a(14) <= 64215009765623.

Examples

			a(3) = 173 because 173 is prime, 173 - 2 = 171 = 3^2 * 19 and 173 + 2 = 175 = 5^2 * 7 are both products of 3 primes with multiplicity, and no smaller number works.
		

Crossrefs

Cf. A001222. Contained in A371622.

Programs

  • Maple
    V:= Vector(8):
    p:= 3: count:= 0:
    while count < 8 do
    p:= nextprime(p);
    i:= numtheory:-bigomega(p-2);
    if i <= 8 and V[i] = 0 and numtheory:-bigomega(p+2) = i
         then V[i]:= p; count:= count+1
      fi
    od:
    convert(V,list);
  • PARI
    generate(A, B, n) = A=max(A, 2^n); (f(m, p, j) = my(list=List()); if(j==1, forprime(q=max(p,ceil(A/m)), B\m, my(t=m*q); if(isprime(t-2) && bigomega(t-4) == n, listput(list, t-2))), forprime(q = p, sqrtnint(B\m, j), list=concat(list, f(m*q, q, j-1)))); list); vecsort(Vec(f(1, 3, n)));
    a(n) = my(x=2^n, y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Apr 13 2024
  • Python
    from sympy import primeomega, nextprime
    def A371651(n):
        p = 3
        while True:
            if n == primeomega(p-2) == primeomega(p+2):
                return p
            p = nextprime(p) # Chai Wah Wu, Apr 02 2024
    

Formula

a(n) > 2*A154704(n) for n > 1.

Extensions

a(11) from Michael S. Branicky, Apr 01 2024
a(12) from Michael S. Branicky, Apr 02 2024
a(13) from Chai Wah Wu, Apr 04 2024
a(14)-a(16) from Daniel Suteu, Apr 13 2024