cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A371653 Numbers k such that the number formed by putting the digits of k in descending order is prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 14, 16, 17, 31, 34, 35, 37, 38, 41, 43, 53, 61, 71, 73, 79, 83, 97, 112, 113, 118, 119, 121, 124, 125, 128, 131, 133, 134, 136, 142, 143, 145, 146, 149, 152, 154, 157, 163, 164, 166, 167, 175, 176, 179, 181, 182, 188, 191, 194, 197, 199
Offset: 1

Views

Author

César Eliud Lozada, Apr 01 2024

Keywords

Comments

Numbers k such that A004186(k) is prime. - Robert Israel, Apr 01 2024
If N is a term then all numbers with the same digits as N are terms too.

Examples

			142 is a term because its digits in decreasing order form 421 and this is prime.
		

Crossrefs

Programs

  • Maple
    dd:= proc(n) local L,i;
       L:= sort(convert(n,base,10));
       add(L[i]*10^(i-1),i=1..nops(L))
    end proc:
    select(isprime @ dd, [$1..1000]); # Robert Israel, Apr 01 2024
  • Mathematica
    Select[Range[500], PrimeQ[FromDigits[ReverseSort[IntegerDigits[#]]]] &]
  • Python
    from sympy import isprime
    def ok(n): return isprime(int("".join(sorted(str(n), reverse=True))))
    print([k for k in range(200) if ok(k)]) # Michael S. Branicky, Apr 01 2024
    
  • Python
    from itertools import count, islice, combinations_with_replacement
    from sympy import isprime
    from sympy.utilities.iterables import multiset_permutations
    def A371653_gen(): # generator of terms
        for l in count(1):
            xlist = []
            for p in combinations_with_replacement('987654321',l):
                if isprime(int(''.join(p))):
                    xlist.extend(int(''.join(d)) for d in multiset_permutations(p))
            yield from sorted(xlist)
    A371653_list = list(islice(A371653_gen(),30)) # Chai Wah Wu, Apr 10 2024
Showing 1-1 of 1 results.