cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371665 T(n,k) is the number of reduced unicellular hypermonopoles on n points with k hyperedges, where T(n,k), 1 <= k <= floor(n/2), is an array read by rows.

This page as a plain text file.
%I A371665 #18 Apr 06 2024 15:08:33
%S A371665 1,0,1,8,0,0,36,0,180,0,49,0,1604,0,21,8064,0,5144,0,0,112608,0,7680,
%T A371665 0,604800,0,604428,0,5445,0,11799360,0,1669052,0,1485,68428800,0,
%U A371665 91705536,0,2610608,0,0,1741669632,0,384036016,0,2342340,0,10897286400,0,18071744976,0,972895560,0,1126125
%N A371665 T(n,k) is the number of reduced unicellular hypermonopoles on n points with k hyperedges, where T(n,k), 1 <= k <= floor(n/2), is an array read by rows.
%C A371665 T(n,k) is zero unless k <= n/2. (proven to be correct)
%H A371665 Robert Cori and Gábor Hetyei, <a href="https://arxiv.org/abs/2403.19569">On reduced unicellular hypermonopoles</a>, arXiv:2403.19569 [math.CO], 2024.
%F A371665 T(n,k) = Sum_{i=0..k-1} (-1)^i binomial(n,i)*a(n-1-i,k-i) where the a(n,k) are the Hultman numbers from A164652.
%F A371665 T(2*m+1,1) = (2*m)! / (m+1) = A060593(m) for m >= 1.
%e A371665 The table begins:
%e A371665          1;
%e A371665          0,          1;
%e A371665          8,          0;
%e A371665          0,         36,        0;
%e A371665        180,          0,       49;
%e A371665          0,       1604,        0,        21;
%e A371665       8064,          0,     5144,         0;
%e A371665          0,     112608,        0,      7680,       0;
%e A371665     604800,          0,   604428,         0,    5445;
%e A371665          0,   11799360,        0,   1669052,       0,    1485;
%e A371665   68428800,          0, 91705536,         0, 2610608,       0;
%e A371665          0, 1741669632,        0, 384036016,       0, 2342340, 0;
%p A371665 proc(n, k)
%p A371665     local i;
%p A371665     coeff(expand(add(combinat:-binomial(n, i)*(-x)^i*(pochhammer(x, n - i + 1) - pochhammer(x - n + i, n - i + 1))/((n - i)*(n - i + 1)), i = 0 .. n - 1)), x, k);
%p A371665 end proc
%Y A371665 Cf. A060593, A164652.
%K A371665 nonn,tabf
%O A371665 3,4
%A A371665 _Gabor Hetyei_, Apr 02 2024