cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371675 G.f. satisfies A(x) = 1 + x * A(x)^(3/2) * (1 + A(x)^(1/2))^2.

This page as a plain text file.
%I A371675 #17 Nov 28 2024 03:48:04
%S A371675 1,4,32,324,3696,45316,583152,7769348,106250144,1482925956,
%T A371675 21037812352,302478044996,4397824031376,64549296707460,
%U A371675 955150116019920,14233474784850948,213417133281087040,3217460713030341892,48741781832765496288,741606216370357708612
%N A371675 G.f. satisfies A(x) = 1 + x * A(x)^(3/2) * (1 + A(x)^(1/2))^2.
%F A371675 G.f. satisfies A(x) = ( 1 + x * A(x)^(3/2) * (1 + A(x)^(1/2)) )^2.
%F A371675 G.f.: B(x)^2 where B(x) is the g.f. of A144097.
%F A371675 a(n) = 2 * Sum_{k=0..n} binomial(n,k) * binomial(3*n+k+2,n)/(3*n+k+2).
%F A371675 a(n) ~ sqrt((88 + 161*sqrt(2/5))/Pi) * (223 + 70*sqrt(10))^n / (n^(3/2) * 3^(3*n + 5/2)). - _Vaclav Kotesovec_, Nov 28 2024
%o A371675 (PARI) a(n, r=2, t=3, u=1) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
%Y A371675 Column k=2 of A378238.
%Y A371675 Cf. A006319, A032349, A371676. A371677, A371678.
%Y A371675 Cf. A144097, A371679.
%K A371675 nonn
%O A371675 0,2
%A A371675 _Seiichi Manyama_, Apr 02 2024