cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371677 G.f. satisfies A(x) = 1 + x * A(x)^(5/2) * (1 + A(x)^(1/2))^2.

This page as a plain text file.
%I A371677 #10 Apr 03 2024 11:12:26
%S A371677 1,4,48,772,14256,285380,6023552,131991940,2974096544,68475379204,
%T A371677 1603913377040,38099316926340,915619571011024,22222175033464260,
%U A371677 543894269096547296,13409307961403740420,332707806061304185408,8301493488646359256580
%N A371677 G.f. satisfies A(x) = 1 + x * A(x)^(5/2) * (1 + A(x)^(1/2))^2.
%F A371677 G.f. satisfies A(x) = ( 1 + x * A(x)^(5/2) * (1 + A(x)^(1/2)) )^2.
%F A371677 G.f.: B(x)^2 where B(x) is the g.f. of A363006.
%F A371677 a(n) = 2 * Sum_{k=0..n} binomial(n,k) * binomial(5*n+k+2,n)/(5*n+k+2).
%o A371677 (PARI) a(n, r=2, t=5, u=1) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
%Y A371677 Cf. A006319, A032349, A371675. A371676, A371678.
%Y A371677 Cf. A363006.
%K A371677 nonn
%O A371677 0,2
%A A371677 _Seiichi Manyama_, Apr 02 2024