This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371685 #7 Apr 09 2024 10:44:37 %S A371685 0,1,1,1,2,3,5,6,9,14,14,24,36,56,90,94,120,180,280,450,744,444,720, %T A371685 1080,1680,2700,4464,7560,3828,5040,7560,11760,18900,31248,52920, %U A371685 91440,25584,40320,60480,94080,151200,249984,423360,731520,1285200 %N A371685 Triangle read by rows: T(n, k) = n! * Sum_{j=0..n-1} binomial(k - 1, j) / (j + 1). %F A371685 Restricted to the range 1 <= k <= n: T(n, k) = n!*(2^k - 1)/k. %e A371685 Triangle starts: %e A371685 [0] 0; %e A371685 [1] 1, 1; %e A371685 [2] 1, 2, 3; %e A371685 [3] 5, 6, 9, 14; %e A371685 [4] 14, 24, 36, 56, 90; %e A371685 [5] 94, 120, 180, 280, 450, 744; %e A371685 [6] 444, 720, 1080, 1680, 2700, 4464, 7560; %e A371685 [7] 3828, 5040, 7560, 11760, 18900, 31248, 52920, 91440; %p A371685 T := (n, k) -> local j; n!*add(binomial(k-1, j)/(j + 1), j = 0..n-1): %p A371685 T := (n, k) -> local j; n!*ifelse(n = 0, 0, ifelse(k=0, add(-(-1)^j/j, j = 1..n), (2^k - 1) / k)): %p A371685 seq(print(seq(T(n, k), k = 0..n)), n = 0..7); %Y A371685 Cf. A029767 (main diagonal), A024167 (column 0), A371768 (row sums). %K A371685 nonn,tabl %O A371685 0,5 %A A371685 _Peter Luschny_, Apr 06 2024