This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371695 #17 Apr 16 2024 13:33:07 %S A371695 623,4,114,4,57,4,9,4,26,4,185,4,9,4,1718,4,343,4,9,4,70,4,25,4,9,4, %T A371695 195,4,226,4,9,4,25,4,123,4,9,4,654,4,862,4,9,4,42,4,49,4,9,4,3385,4, %U A371695 25,4,9,4,238,4,202,4,9,4,25,4,453,4,9,4,2435,4,721,4,9,4,49,4,70,4,9,4,186 %N A371695 The smallest composite number that divides the reverse of the concatenation of its ascending ordered prime factors, with repetition, when written in base n. %C A371695 See A371641 for an explanation of multiple terms being 4 and 9. The largest number in the first 10000 terms is a(5980) = 1030778. %H A371695 Scott R. Shannon, <a href="/A371695/b371695.txt">Table of n, a(n) for n = 2..10000</a> %F A371695 If n+1 is composite, then a(n) <= A020639(n+1)^2. The numbers n where n+1 is composite and a(n) < A020639(n+1)^2 are 288, 298, 340, 360, 376, 516, 526, 550, 582, 736, ... and appear to be identical to A371948. - _Chai Wah Wu_, Apr 16 2024 %e A371695 a(2) = 623 as 623 = 7_10 * 89_10 = 111_2 * 1011001_2 = "1111011001"_2 which when reversed is "1001101111"_2 = 623_10 which is divisible by 623. %e A371695 a(4) = 114 as 114 = 2_10 * 3_10 * 19_10 = 2_4 * 3_4 * 103_4 = "23103"_4 which when reversed is "30132"_4 = 798_10 which is divisible by 114. %o A371695 (Python) %o A371695 from itertools import count %o A371695 from sympy.ntheory import digits %o A371695 from sympy import factorint, isprime %o A371695 def fromdigits(d, b): %o A371695 n = 0 %o A371695 for di in d: n *= b; n += di %o A371695 return n %o A371695 def a(n): %o A371695 for k in count(4): %o A371695 if isprime(k): continue %o A371695 sf = [] %o A371695 for p, e in list(factorint(k).items())[::-1]: %o A371695 sf.extend(e*digits(p, n)[1:][::-1]) %o A371695 if fromdigits(sf, n)%k == 0: %o A371695 return k %o A371695 print([a(n) for n in range(2, 83)]) # _Michael S. Branicky_, Apr 16 2024 %Y A371695 Cf. A020639, A371641, A027746, A259047, A322843, A248915, A371948. %K A371695 nonn,base %O A371695 2,1 %A A371695 _Scott R. Shannon_, Apr 03 2024