This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371696 #23 Apr 28 2024 16:29:24 %S A371696 26,38,46,378,26579,84941,178838,30791466,39373022,56405502,227501395, %T A371696 904085931,1657827142 %N A371696 Composite numbers that divide the reverse of the concatenation of their ascending order prime factors, with repetition. %C A371696 a(14) > 10^10, if it exists. - _Daniel Suteu_, Apr 28 2024 %e A371696 26 is a term as 26 = 2 * 13 = "213" which is reverse is "312", and 312 is divisible by 26. %e A371696 227501395 is a term as 227501395 = 5 * 11 * 17 * 23 * 71 * 149 = "511172371149" which in reverse is "941173271115", and 941173271115 is divisible by 227501395. %o A371696 (Python) %o A371696 from itertools import count, islice %o A371696 from sympy import isprime, factorint %o A371696 def ok(k): return not isprime(k) and int("".join(str(p)[::-1]*e for p, e in list(factorint(k).items())[::-1]))%k == 0 %o A371696 def agen(): yield from filter(ok, count(4)) %o A371696 print(list(islice(agen(), 7))) # Michael S. Branicky, Apr 13 2024 %o A371696 (Python) %o A371696 from itertools import count, islice %o A371696 from sympy import factorint %o A371696 def A371696_gen(startvalue=4): # generator of terms >= startvalue %o A371696 for n in count(max(startvalue,4)): %o A371696 f = factorint(n) %o A371696 if sum(f.values()) > 1: %o A371696 c = 0 %o A371696 for p in sorted(f,reverse=True): %o A371696 a = pow(10,len(s:=str(p)),n) %o A371696 q = int(s[::-1]) %o A371696 for _ in range(f[p]): %o A371696 c = (c*a+q)%n %o A371696 if not c: %o A371696 yield n %o A371696 A371696_list = list(islice(A371696_gen(),6)) # _Chai Wah Wu_, Apr 13 2024 %Y A371696 Cf. A027746, A037276, A259047, A371641, A371666. %K A371696 nonn,base,more %O A371696 1,1 %A A371696 _Scott R. Shannon_, Apr 03 2024 %E A371696 a(13) from _Daniel Suteu_, Apr 28 2024