cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371699 The smallest composite number which divides the concatenation of its descending ordered prime factors, with repetition, when written in base n.

Original entry on oeis.org

42, 4, 42, 4, 374, 4, 9, 4, 378, 4, 609, 4, 9, 4, 3525, 4, 343, 4, 9, 4, 70, 4, 25, 4, 9, 4, 195, 4, 343, 4, 9, 4, 25, 4, 130, 4, 9, 4, 366, 4, 3562, 4, 9, 4, 42, 4, 49, 4, 9, 4, 474, 4, 25, 4, 9, 4, 238, 4, 1131, 4, 9, 4, 25, 4, 555, 4, 9, 4, 14405, 4, 12207
Offset: 2

Views

Author

Chai Wah Wu, Apr 12 2024

Keywords

Comments

Conjecture: a(n) <= A371641(n) for n >= 2.

Examples

			a(2) = 42 since 42 = 7*3*2 = 111_2 * 11_2 * 10 _2 and 42 divides 126 = 1111110_2.
a(10) = 378 since 278 = 7*3*3*3*2 and 278 divides 73332.
		

Crossrefs

Programs

  • Python
    from itertools import count
    from sympy import factorint, integer_log
    def A371699(n):
        for m in count(4):
            f = factorint(m)
            if sum(f.values()) > 1:
                c = 0
                for p in sorted(f,reverse=True):
                    a = pow(n,integer_log(p,n)[0]+1,m)
                    for _ in range(f[p]):
                        c = (c*a+p)%m
                if not c:
                    return m

Formula

If p is prime, then a(p*(m+2)-1) <= p^2 for all m >= 0.
If n+1 is composite, then a(n) <= q^2, where q = A020639(n+1) is the smallest prime factor of n+1. This implies that if n > 2 is odd, then a(n) = A371641(n) = 4.
The first few terms n where n+1 is composite and a(n) < A020639(n+1)^2 are a(288) = 70, a(298) = 42, a(340) = 42, a(360) = 182, ...
If n is even, then a(n) >= 9. This is true as it is easy to verify that a(n) cannot be equal to 4, 6 or 8 in this case.
Suppose n>2 is even. 2 concatenated twice in base n is 2(n+1) which is not divisible by 4.
Next, 3 concatenated by 2 is 3*n+2 which is not divisible by 6. Finally 2 concatenated 3 times is 2(n^3-1)/(n-1) which is not divisible by 8 since n^3-1 is odd.
This implies that if n = 6*k+2 for some k > 0, then a(n) = A371641(n) = 9.