A371706 a(n) is the least k > 0 such that n^k contains the digit 1.
1, 4, 4, 2, 3, 3, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 3, 3, 3, 3, 3, 3, 3, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 3, 3, 2, 3, 1, 3, 3, 2, 3, 2, 3, 3, 2, 3, 1, 4, 4, 3, 4, 4, 4, 3, 2, 4, 1, 2, 3, 5, 3, 4, 4, 4, 2, 3, 1, 3, 3, 4, 3, 4, 4, 3, 2, 2, 1, 4, 4, 6, 4, 2, 3, 3, 2
Offset: 1
Examples
a(3) = 4 because 3^1, 3^2 = 9 and 3^3 = 27 have no 1's, but 3^4 = 81 does have a 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
g:= proc(n) local k; for k from 1 do if member(1,convert(n^k,base,10)) then return k fi od; end proc: map(g, [$1..100]);
-
Mathematica
seq={};Do[k=1;While[!ContainsAny[IntegerDigits[n^k],{1}],k++];AppendTo[seq,k],{n,99}];seq (* James C. McMahon, Apr 05 2024 *)
-
Python
from itertools import count def A371706(n): m = n for k in count(1): if '1' in str(m): return k m *= n # Chai Wah Wu, Apr 04 2024
Formula
a(n) <= A098174(n).
Comments