This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371707 #18 Apr 10 2024 12:24:49 %S A371707 2,7,3,4,3,9,0,0,1,9,0,8,5,6,8,3,8,5,5,3,8,7,9,1,7,5,8,0,0,4,6,9,8,1, %T A371707 5,0,2,4,0,1,7,4,5,5,6,0,1,9,5,3,7,4,0,3,7,9,5,7,8,7,7,4,6,4,5,0,9,3, %U A371707 5,0,8,6,8,8,7,8,4,2,8,6,6,5,9,7,5,4,3,3,8,7,4,2,2,9,6,2,1,9,5,2 %N A371707 Constant r > 0 satisfying: Sum_{n>=0} (r^n + 2*Pi*i)^n/n! = C + i*S such that C^2 + S^2 = 1. %C A371707 Related identity: Sum_{n>=0} (x^n + y)^n/n! = Sum_{n>=0} exp(y*x^n)*x^(n^2)/n!. Here, x = r and y = 2*Pi*i. %C A371707 What are the roots of Norm( Sum_{n>=0} (x^n + 2*Pi*i)^n/n! ) = 1? The real roots include x = 0 and x = r (this constant). %H A371707 Paul D. Hanna, <a href="/A371707/b371707.txt">Table of n, a(n) for n = 0..1000</a> %F A371707 Constant r and related values C and S satisfy the following formulas. %F A371707 (1) Sum_{n>=0} (r^n + 2*Pi*i)^n/n! = C + i*S such that C^2 + S^2 = 1. %F A371707 (2) C = Sum_{n>=0} cos(2*Pi*r^n) * r^(n^2) / n!. %F A371707 (3) S = Sum_{n>=0} sin(2*Pi*r^n) * r^(n^2) / n!. %e A371707 The initial 500 digits of this constant r are %e A371707 r = 0.27343900190856838553879175800469815024017455601953\ %e A371707 74037957877464509350868878428665975433874229621952\ %e A371707 21271807208862504474781327669150216691806622917186\ %e A371707 30052292342530146845288659570856888661537928135397\ %e A371707 91914154858221560663972999347727219299210079054658\ %e A371707 20785838554943078876634169703813817526574697076018\ %e A371707 43103025671330263969269247113168608393647224573552\ %e A371707 82695245129846145197371729802801821910764770241403\ %e A371707 85315562772171090016733480930506290614196661276630\ %e A371707 35680469795753191100711562687066719873558759501438... %e A371707 Given Sum_{n>=0} (r^n + 2*Pi*i)^n / n! = C + i*S %e A371707 then C = Sum_{n>=0} cos(2*Pi*r^n) * r^(n^2) / n!, where %e A371707 C = 0.96236940120128609855708390989630224707797733780139\ %e A371707 33346689286186097367092064030604732865267035268595\ %e A371707 44279783779811281344593178122348416729686502694192\ %e A371707 27215955652725928674242226419071059523037649451781\ %e A371707 36060669147586159699815697962817267659814744582224\ %e A371707 93126268783872251860132042094952557434607056861286\ %e A371707 20902477149931860926346847824008347947488598827305\ %e A371707 47837372109484356517193566333052743194953698066525\ %e A371707 72228584587713864226102674129509160583381421007047\ %e A371707 75118828482389128699072732009353421657729660481717... %e A371707 and S = Sum_{n>=0} sin(2*Pi*r^n) * r^(n^2) / n!, where %e A371707 S = 0.27174461472396842102515050866607715426951746748919\ %e A371707 04159412993022348271493896385066506863889535797824\ %e A371707 35085649751784233166430963459007191963331589808443\ %e A371707 52259856849111637575812332490848107413710402589323\ %e A371707 75221334357855133874979455560441735994213395179878\ %e A371707 38917993730963815574520261440791182088848636006332\ %e A371707 68221934823032560291871222621378256174374612116671\ %e A371707 09358271083370500808439006024716239994653435216572\ %e A371707 21204963868973568338610259219318795040671357965613\ %e A371707 68248089245008828798740589773672045329008665505374... %e A371707 such that C^2 + S^2 = 1. %Y A371707 Cf. A326600. %K A371707 nonn,cons %O A371707 0,1 %A A371707 _Paul D. Hanna_, Apr 09 2024