This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371713 #26 Jun 18 2024 10:36:38 %S A371713 1,1,3,10,39,161,698,3126,14361,67287,320319,1544894,7532756,37070678, %T A371713 183892128,918539002,4615979653,23321497085,118391352149,603585987830, %U A371713 3089089467145,15864868600157,81737410659710,422342729686590,2188088882282654,11363944086758244,59152933495794684 %N A371713 Expansion of g.f. A(x) satisfying A(x)^2 = A( A(x)*(x + A(x)^2) ). %H A371713 Paul D. Hanna, <a href="/A371713/b371713.txt">Table of n, a(n) for n = 1..1030</a> %F A371713 G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas. %F A371713 (1) A(x)^2 = A( x*A(x) + A(x)^3 ). %F A371713 (2) A(x)^4 = A( x*A(x)^3 + A(x)^5 + A(x)^6 ). %F A371713 (3) A(x)^8 = A( x*A(x)^7 + A(x)^9 + A(x)^10 + A(x)^12 ). %F A371713 (4) A(x)^(2^n) = A( x*A(x)^(2^n-1) + Sum_{k=0..n-1} A(x)^(2^n+2^k) ) for n > 0. %F A371713 (5) A(x) = x + Sum_{n>=0} A(x)^(2^n+1). %F A371713 (6) A(x) = Series_Reversion(x - x*Sum_{n>=0} x^(2^n) ). %F A371713 a(n) ~ c * d^n / n^(3/2), where d = 5.51142100999137014688261137378225123402050823381269982231021216596989145... and c = 0.07924552169373639393012621342284829291839319195254975892205166214809... - _Vaclav Kotesovec_, Apr 05 2024 %F A371713 The radius of convergence r = 0.1814414101530... = 1/d (d is given above) and A(r) satisfy: 1 = Sum_{n>=0} (2^n+1) * A(r)^(2^n) and r = A(r) - Sum_{n>=0} A(r)^(2^n+1), where A(r) = 0.319865507392391473797021103685180915354570766210154873070... - _Paul D. Hanna_, Apr 05 2024 %F A371713 c = sqrt(r) / sqrt(2*Pi * Sum_{k>=0} 2^k * (1 + 2^k) * A(r)^(2^k - 1)). - _Vaclav Kotesovec_, Apr 05 2024 %e A371713 G.f.: A(x) = x + x^2 + 3*x^3 + 10*x^4 + 39*x^5 + 161*x^6 + 698*x^7 + 3126*x^8 + 14361*x^9 + 67287*x^10 + 320319*x^11 + 1544894*x^12 + ... %e A371713 where A(x)^2 = A( A(x)*(x + A(x)^2) ). %e A371713 RELATED SERIES. %e A371713 (1) A(x)^2 = x^2 + 2*x^3 + 7*x^4 + 26*x^5 + 107*x^6 + 460*x^7 + 2052*x^8 + 9394*x^9 + 43903*x^10 + 208570*x^11 + 1004263*x^12 + ... %e A371713 (2) A(x)*(x + A(x)^2) = x^2 + 2*x^3 + 6*x^4 + 22*x^5 + 88*x^6 + 374*x^7 + 1652*x^8 + 7512*x^9 + 34920*x^10 + 165198*x^11 + 792700*x^12 + ... %e A371713 (3) Let R(x) be the series reversion of A(x), R(A(x)) = x, then %e A371713 R(x) = x - x^2 - x^3 - x^5 - x^9 - x^17 - x^33 - x^65 + ... + -x^(2^n+1) + ... %e A371713 and R(x) = R(x^2)/x - x^2. %e A371713 SPECIFIC VALUES. %e A371713 A(1/6) = 0.2367013365733826841498068726305704943941... %e A371713 A(1/7) = 0.1823951399847440022737563157206822905959... %e A371713 A(1/8) = 0.1515149787834965771672802816841610180120... %e A371713 A(1/9) = 0.1303567976332909027691102900878848253626... %e A371713 A(1/6)^2 = A(t) at t = A(1/6)*(1/6 + A(1/6)^2) = 0.05271201227864865... %e A371713 A(1/7)^2 = A(t) at t = A(1/7)*(1/7 + A(1/7)^2) = 0.03212436773155026... %t A371713 nmax = 30; A[_] = 0; Do[A[x_] = x + Sum[A[x]^(2^k + 1), {k, 0, Log[nmax]/Log[2]}] + O[x]^(nmax + 1) // Normal, nmax + 1]; Rest[CoefficientList[A[x], x]] (* _Vaclav Kotesovec_, Apr 05 2024 *) %o A371713 (PARI) /* G.f. Series_Reversion(x - x*Sum_{n>=0} x^(2^n)) */ %o A371713 {a(n) = my(A = serreverse(x - x*sum(k=0,#binary(n), x^(2^k)) +x*O(x^n))); polcoeff(A,n)} %o A371713 for(n=1, 30, print1(a(n), ", ")) %o A371713 (PARI) {a(n) = my(A=[1],F); for(i=1,n, A=concat(A,0); F=x*Ser(A); %o A371713 A[#A] = -polcoeff( F^2 - subst(F,x, F*(x + F^2)), #A+1) ); A[n]} %o A371713 for(n=1, 30, print1(a(n), ", ")) %Y A371713 Cf. A356782, A370439, A372578. %K A371713 nonn %O A371713 1,3 %A A371713 _Paul D. Hanna_, Apr 05 2024