This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A371716 #26 May 29 2024 12:08:12 %S A371716 1,1,1,1,2,7,22,57,131,298,738,2003,5600,15380,41224,109769,296010, %T A371716 813333,2261818,6307070,17560050,48877852,136457322,382803675, %U A371716 1078562370,3047295816,8623046992,24432992884,69345396556,197211214852,561975160288,1604186098089,4585779820379 %N A371716 Expansion of g.f. A(x) satisfies A( x*A(x)^3 + x*A(x)^4 ) = A(x)^4. %C A371716 Compare to the following identities of the Catalan function C(x) = x + C(x)^2 (A000108): %C A371716 (1) C(x)^2 = C( x*C(x)*(1 + C(x)) ), %C A371716 (2) C(x)^4 = C( x*C(x)^3*(1 + C(x))*(1 + C(x)^2) ), %C A371716 (3) C(x)^8 = C( x*C(x)^7*(1 + C(x))*(1 + C(x)^2)*(1 + C(x)^4) ), %C A371716 (4) C(x)^(2^n) = C( x*C(x)^(2^n-1)*Product_{k=0..n-1} (1 + C(x)^(2^k)) ) for n > 0. %H A371716 Paul D. Hanna, <a href="/A371716/b371716.txt">Table of n, a(n) for n = 1..1030</a> %F A371716 G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas. %F A371716 (1) A(x)^4 = A( x*A(x)^3*(1 + A(x)) ). %F A371716 (2) A(x)^16 = A( x*A(x)^15*(1 + A(x))*(1 + A(x)^4) ). %F A371716 (3) A(x)^64 = A( x*A(x)^63*(1 + A(x))*(1 + A(x)^4)*(1 + A(x)^16) ). %F A371716 (4) A(x) = x * Product_{n>=0} (1 + A(x)^(4^n)). %F A371716 (5) A(x) = Series_Reversion( x / Product_{n>=0} (1 + x^(4^n)) ). %F A371716 The radius of convergence r of g.f. A(x) and A(r) satisfy 1 = Sum_{n>=0} 4^n * A(r)^(4^n) / (1 + A(r)^(4^n)) and r = A(r) / Product_{n>=0} (1 + A(r)^(4^n)), where r = 0.33394799468036632700505690802809657984166722... and A(r) = 0.64588119033501052326223671937159514208118071... %e A371716 G.f.: A(x) = x + x^2 + x^3 + x^4 + 2*x^5 + 7*x^6 + 22*x^7 + 57*x^8 + 131*x^9 + 298*x^10 + 738*x^11 + 2003*x^12 + 5600*x^13 + 15380*x^14 + ... %e A371716 where A( x*A(x)^3*(1 + A(x)) ) = A(x)^4. %e A371716 RELATED SERIES. %e A371716 Let B(x) be the series reversion of g.f. A(x), B(A(x)) = x, then %e A371716 B(x) = x/((1+x)*(1+x^4)*(1+x^16)*(1+x^64)*(1+x^256)*(1+x^1024)*...) = x - x^2 + x^3 - x^4 + x^9 - x^10 + x^11 - x^12 + x^33 - x^34 + ... %e A371716 We can show that g.f. A(x) = A( x*A(x)^3*(1 + A(x)) )^(1/4) satisfies %e A371716 (4) A(x) = x * Product_{n>=0} (1 + A(x)^(4^n)) %e A371716 by substituting x*A(x)^3*(1 + A(x)) for x in (4) to obtain %e A371716 A(x)^4 = x * A(x)^3*(1 + A(x)) * Product_{n>=1} (1 + A(x)^(4^n)) %e A371716 which is equivalent to formula (4). %e A371716 SPECIFIC VALUES. %e A371716 A(1/3) = 0.6209428791888803994421374991623399343094... %e A371716 A(1/4) = 0.3392462304609640143453810140211726768116... %e A371716 A(1/5) = 0.2512464727722296135954631316870173555867... %e A371716 A(t) = 1/2 and A(t*3/16) = 1/16 at t = 0.31372070319804379323613829910755157... %e A371716 A(t) = 1/3 and A(t*4/81) = 1/81 at t = 0.24695121377537689193140239461709572... %e A371716 A(t) = 1/4 and A(t*5/256) = 1/256 at t = 0.199221789836883544932674834867379... %o A371716 (PARI) /* Using series reversion of x/Product_{n>=0} (1 + x^(4^n)) */ %o A371716 {a(n) = my(A); A = serreverse( x/prod(k=0, ceil(log(n)/log(4)), (1 + x^(4^k) +x*O(x^n)) ) ); polcoeff(A, n)} %o A371716 for(n=1, 35, print1(a(n), ", ")) %o A371716 (PARI) /* Using A(x)^4 = A( x*A(x)^3 + x*A(x)^4 ) */ %o A371716 {a(n) = my(A=[1], F); for(i=1, n, A = concat(A, 0); F = x*Ser(A); %o A371716 A[#A] = polcoeff( subst(F, x, x*F^3 + x*F^4 ) - F^4, #A+3) ); A[n]} %o A371716 for(n=1, 35, print1(a(n), ", ")) %Y A371716 Cf. A371709, A371713. %K A371716 nonn %O A371716 1,5 %A A371716 _Paul D. Hanna_, May 03 2024