cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A371720 a(n) = m^^m mod 10^len(m), where m = A038399(n) and ^^ indicates tetration or hyper-4.

This page as a plain text file.
%I A371720 #41 Jun 03 2024 14:20:34
%S A371720 1,11,811,3811,63811,763811,3763811,5103763811,515103763811,
%T A371720 19515103763811,6819515103763811,8146819515103763811,
%U A371720 3808146819515103763811,7213808146819515103763811,9807213808146819515103763811,4939807213808146819515103763811
%N A371720 a(n) = m^^m mod 10^len(m), where m = A038399(n) and ^^ indicates tetration or hyper-4.
%C A371720 For any n, a(n) == a(n + 1) (mod 10^len(A038399(n))), where len(k) := number of digits in k. Assuming len(a(n)) > 1, this is a general property of every concatenated sequence with fixed rightmost digits (such as A014925, A061839, A092845, and A104759), as shown in Ripà's book "La strana coda della serie n^n^...^n".
%C A371720 Moreover, assuming n > 1, since A038399(n) is congruent to 11 (mod 20), the convergence speed of A038399(n)^^b (say, V(A038399(n), b) = {2, 1, 1, 1, ...}) is 2 at height 1 and becomes a unit value for any integer b > 1 (see Links). Hence, a(n) is given by A038399(n)^^len(A038399(n) - 1) (mod 10^len(A038399(n))), and also by A038399(n)^^len(A038399(n)) (mod 10^len(A038399(n))) since A038399(n)^^len(A038399(n)) == A038399(n)^^len(A038399(n) - 1) (mod 10^len(A038399(n))) holds for any n.
%D A371720 Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, page 60. ISBN 978-88-6178-789-6
%H A371720 Marco Ripà, <a href="https://doi.org/10.7546/nntdm.2021.27.4.43-61">The congruence speed formula</a>, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43-61.
%H A371720 Marco Ripà and Luca Onnis, <a href="https://doi.org/10.7546/nntdm.2022.28.3.441-457">Number of stable digits of any integer tetration</a>, Notes on Number Theory and Discrete Mathematics, 2022, 28(3), 441-457.
%H A371720 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetration">Tetration</a>.
%F A371720 a(n) = A038399(n)^^(len(A038399(n)) - 1) mod 10^len(A038399(n)), where len(A038399(n)) = ceiling(log_10(A038399(n) + 1)).
%e A371720 a(8) is given by the rightmost 10 digits of 2113853211^^2113853211 and thus a(8) = 5103763811.
%e A371720 a(9) == a(8) (mod 10^10), i.e., the digits of a(9) end with the digits of a(8) (and then a(9) has 2 more preceding).
%Y A371720 Cf. A000045 (Fibonacci), A038399, A171882 (tetration), A317824, A317903, A317905.
%K A371720 nonn,base,more
%O A371720 1,2
%A A371720 _Marco Ripà_, Apr 04 2024